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la matematica e la fisica: mi ha insegnato il mestiere del ricercatore. La ricerca continua e senza
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1 Introduction and Motivation

In this work we study different aspects of 4d N = 2 superconformal field theories. Not only we

accurately define what we mean by a 4d N = 2 superconformal field theory, but we also invent and

apply new mathematical methods to classify these theories and to study their physical content.

Therefore, although the origin of the subject is physical, our methods and approach are rigorous

mathematical theorems: the physical picture is useful to guide the intuition, but the full mathe-

matical rigor is needed to get deep and precise results. No familiarity with the physical concept

of Supersymmetry (SUSY) is need to understand the content of this thesis: everything will be

explained in due time. The reader shall keep in mind that the driving force of this whole work

are the consequences of SUSY at a mathematical level. Indeed, as it will be detailed in part II, a

mathematician can understand a 4d N = 2 superconformal field theory as a complexified algebraic

integrable system. The geometric properties are very constrained: we deal with special Kähler

geometries with a few other additional structures (see part II for details). Thanks to the rigidity

of these structures, we can compute explicitly many interesing quantities: in the end, we are able

to give a coarse classification of the space of “action” variables of the integrable system, as well as

a fine classification – only in the case of rank k = 1 – of the spaces of “angle” variables.

We were able to classify conical special Kähler geometries via a number of deep facts of algebraic

number theory, diophantine geometry and class field theory: the perfect overlap between mathe-

matical theorems and physical intuition was astonishing. And we believe we have only scratched

the surface of a much deeper theory: we can probably hope to get much more information than

what we already discovered; of course, a deeper study of the subject – as well as its generalizations

– is required.

A 4d N = 2 superconformal field theory can thus be defined by its geometric structure: its scaling

dimensions, its singular fibers, the monodromy around them and so on. But giving a proper and

detailed definition is only the beginning: one may be interested in exploring its physical content. In

particular, we are interested in supersymmetric quantities such as BPS states, framed BPS states

and UV line operators. These quantities, thanks to SUSY, can be computed independently of

many parameters of the theory: this peculiarity makes it possible to use the language of category

theory to analyze the aforementioned aspects. As it will be proven in part V, to each 4d N = 2

superconformal field theory we can associate a web of categories, all connected by functors, that

describe the BPS states, the framed BPS states (IR) and the UV line operators. Hence, following

the old ideas of ‘t Hooft, it is possible to describe the phase space of gauge theories via categories,

since the vacuum expectation values of such line operators are the order parameters of the confine-

ment/deconfinement phase transitions. Mathematically, the (quantum) cluster algebra of Fomin

and Zelevinski is the structure needed. Moreover, the analysis of BPS objects led us to a deep

understanding of generalized S-dualities. Not only were we able to precisely define – abstractly and

generally – what the S-duality group of a 4d N = 2 superconformal field theory should be, but we

were also able to write a computer algorithm to obtain these groups in many examples (with very

high accuracy).

The structure of the thesis is organized as follows: we start with a more detailed introduction of

the various topics analyzed during my PhD years in SISSA: this is the remaining content of part I.

Part II contains all the mathematical background needed to understand the geometry of generic

4d N = 2 superconformal field theories. Part II has its roots in the seminal papers of Seiberg and

8



Witten [223, 224] and it includes many progresses of the last decade. We develop our framework

with great details: after the main definitions are settled, we pass onto part III. In this part we

give a fine classification of all rank k = 1 theories: our main tool is the Kodaira-Néron model and

the Mordell-Weil theorem. Indeed, it turns out that the classification of physical objects can be

found inside the tables classifying all MW lattices with certain properties (see section 8.1 for more

details). The totally explicit description of the rank one case is very useful to have simple examples

always at hand.

Part IV contains the coarse classification of the scaling dimensions of the Coulomb Branch. The

study of the monodromy around normal rays as well as many deep theorems of class field theory

are needed to prove the rules of the classification. In section 12 we provide the full list of scaling

dimensions up to rank 4.

Part V employs a different language: the language of category theory. This language is very gen-

eral and totally well defined. Unfortunately, the categories we have found – although they describe

the BPS physics very well – are heavily based on the existence of a BPS quiver (the quiver of a

2d theory associated to the 4d N = 2 SCFT via the the 2d/4d correspondence, as described in

appendix A). We are currently trying to remove this strong hypothesis. Our starting point would

be to find a categorical classification of the discretely gauged rank one theories of III: this work is

still in progress.

Finally, in part VI we provide the proof and the description of the algorithm to compute the gen-

eralized S-duality groups as well as the vacuum expectation values of the UV line operators. Many

explicit examples are provided: it is manifest how these methods can be used to tackle problems

which are too hard for other techniques.

Eventually we provide some additional details is the appendices as well as a full bibliography.

2 Geometric classification

Following the seminal papers by Seiberg and Witten [223, 224], in the last years a rich landscape

of four-dimensional N = 2 superconformal field theories (SCFT) had emerged, mostly without a

weakly-coupled Lagrangian formulation [58,59,66,79,80,90,110,123,125,126,141,157,190,243,244,

249]. It is natural to ask for a map of this vast territory, that is, for a classification of unitary

4d N = 2 SCFTs. The work in this direction follows roughly two approaches: the first one aims

to partial classifications of N = 2 SCFTs having some specific construction [90, 123, 141, 157, 244]

or particular property [67, 110]. The second approach, advocated in particular by the authors of

refs. [19–22,26,27], relates the classification of N = 2 SCFTs to the geometric problem of classifying

the conic special geometries (CSG) which describe their IR physics along the Coulomb branch M à

la Seiberg and Witten [223,224]. The first part of this thesis belongs to this second line of thought:

it is meant to be a contribution to the geometric classification of CSG with applications to N = 2

SCFT.

Comparison with other classification problems in complex geometry suggests that, while de-

scribing all CSG up to isomorphism may be doable when M has very small dimension,1 it becomes

rapidly intractable as we increase the rank k. A more plausible program would be a coarse-grained

1 The complex dimension k of the Coulomb branch M is also known as the rank of the SCFT. We shall use the
two terms interchangeably.
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classification of the CSG not up to isomorphism but rather up to some kind of “birational” equiva-

lence, that is, neglecting the details of the geometry along “exceptional” loci of positive codimension.

This is the point of view we adopt in our analysis.

The classification problem is in a much better shape than one may expect. Indeed, while a

priori the Coulomb branch M is just a complex analytic space, it follows from the local properties

of special Kähler geometry that a CSG must be a complex cone over a base K which is a normal

projective variety. K is (birational to) an algebraic variety of a very special kind: a simply-

connected log-Fano [150] with Picard number one and trivial Hodge diamond (a special instance of

a Mori dream space [148]).

In practice, in the coarse-grained classification we limit our ambition to the description of the

allowed rings R of holomorphic functions on M (the Coulomb branch chiral rings). Several distinct

(deformation-types of) SCFTs have the same R but differ in other respects as their flavor symmetry.

The simplest example of a pair of distinct SCFT with the same R is given by SU(N) SQCD with

2N fundamentals and N = 2∗ with the same gauge group; see refs. [19–22] and part III of the

present thesis for additional examples in rank 1.

The chiral ring R of a SCFT is graded by the value of the U(1)R charge (equal to the dimension ∆

for a chiral operator). The general expectation2 is that the Coulomb branch chiral ring is a graded

free polynomial ring,

R = C[u1, u2, · · · , uk]. (2.1)

This is equivalent3 to saying that the log-Fano K is a weighted projective space (WPS). The last

statement is only slightly stronger than the one in the previous paragraph: all WPS are simply-

connected log-Fano with Picard number one and trivial Hodge diamond [100]. Conversely, a toric

log-Fano with these properties is necessarily a (fake4) weighted projective space [48]. Then it

appears that the log-Fano varieties which carry all the structures implied by special geometry form

to a class of manifolds only slightly more general than the WPS. This explains why many N = 2

models have free chiral rings.

Assuming (2.1), the information encoded in the ring R is just the k-tuple {∆1,∆2, · · · ,∆k} of

the U(1)R charges of its free generators ui. Even if the ring is non-free the spectrum of dimensions

of R is a basic invariant of the SCFT. The coarse-grained classification of CSG then aims to list

the allowed Coulomb branch dimension k-tuples {∆1, · · · ,∆k} for each rank k ∈ N. An even less

ambitious program is to list the finitely-many real numbers ∆ which may be the dimension of a

Coulomb branch generator in a N = 2 SCFT of rank at most k. In a unitary theory, all ∆’s are

rational numbers ≥ 1. If the chiral ring is non-free, but with a finite free covering, we easily reduce

to the above case.

Non-free chiral rings. After the submission of our paper [52], the article [42] appeared in the

arXiv where examples of N = 2 theories with non-free chiral rings are constructed. Those examples

are in line with our geometric discussion being related to the free ring case by a finite quotient

(gauging). Most of the discussion of the present thesis applies to these more general situation as

2 See however [15] for a discussion of the phenomena which would appear if this is not the case. We shall briefly
elaborate on this topic in the third caveat of §. 5.1.1.

3 Since the dimensions ∆ are positive rationals.
4 All fake WPS are quotients of WPS by finite Abelian groups.
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well (many arguments are formulated modulo finite quotients). The only point where we assume

that the ring R is free5, in order to simplify the analysis, is in showing that the Coulomb branch

contains “many” normal rays. Our argument in the present form requires just one normal ray, so

the request of “many” of them is rather an overkill. It is relatively straightforward to extend the

details of our analysis to finite quotients.

In the rest of this Introduction we present a non-technical survey of our main results for both

the list of allowed dimensions and dimension k-tuples. In particular, §. 2.3 contains a heuristic

derivation of the Universal Dimension Formula.

2.1 Coulomb branch dimensions ∆

In section 4 we present a very simple recursive algorithm to produce the list of (putative) dimensions

∆ allowed in a rank-k CSG for all k ∈ N. The dimension lists for ranks up to 13 are presented

in the tables of section 6. After the completion of our paper [52], ref. [24] appeared on the arXiv

where the list of dimensions for k = 2 is also computed. Our results are in perfect agreement with

theirs.

Let us describe some general property of the set of dimensions in given rank k. The number of

allowed ∆’s is not greater than a certain Number-Theoretical function N(k) of the rank k

#

∆ ∈ Q≥1

∣∣∣∣∣∣ ∆ ≡ dimension of a Coulomb branch

free generator in a CSG of rank ≤ k

 ≤N(k). (2.2)

There is evidence that ≤ may be actually replaced by an equality sign.

N(k) is a rather peculiar function: it is stationary for “most” k ∈ N, N(k) = N(k − 1) and,

while the ratio

ν(2k) =
(
N(k)−N(k − 1)

)
/2k (2.3)

is “typically” a small integer, it takes all integral value ≥ 2 infinitely many times. The first few

values of N(k) are listed in table 1. N(k) may be written as a Stieltjes integral of the function6

N(k)int which counts the number of integral dimensions ∆ at rank k

N(k) = 2

k+ε∫
0

x dN
(
x
)

int
. (2.4)

From this expression we may easily read the large rank asymptotics7 of N(k)

N(k) =
2 ζ(2) ζ(3)

ζ(6)
k2 + o(k2) as k →∞. (2.5)

As mentioned above, we expect this bound to be optimal, that is, the actual number of Coulomb

dimensions to have the above behavior for large k.

5 A part for the explicit examples of course.
6 For the precise definition of N(x)int for real positive x, see §. 10.4.2.
7 ζ(s) is the Riemann zeta-function.
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k 1 2 3 4 5 6 7 8 9 10 11 12

N(k) 8 24 48 88 108 180 180 276 348 448 492 732

k 13 14 15 16 17 18 19 20 21 22 23 24

N(k) 732 788 848 1072 1072 1360 1360 1720 1888 2020 2112 2640

Table 1: Values of the function N(k) for ranks k ≤ 25 (N(25) = N(24)).

The number N(k) is vastly smaller than the number of isoclasses of CSG of rank ≤ k, showing

that the coarse-grained classification is dramatically simpler than the fine one. The counting (2.2)

should be compared with the corresponding one for Lagrangian N = 2 SCFTs

#

∆ ∈ Q≥1

∣∣∣∣∣∣ ∆ ≡ dimension of a Coulomb branch free

generator in a Lagrangian model of rank ≤ k

 =

⌊
3 k

2

⌋
, k ≥ 15, (2.6)

which confirms the idea that the Lagrangian dimensions have “density zero” in the set of all N = 2

Coulomb dimensions. The Lagrangian dimensions are necessarily integers; the number of allowed

integral dimension at rank k is (not greater than)

N(k)int =
2 ζ(2) ζ(3)

ζ(6)
k + o(k) as k →∞ (2.7)

so, for large k, roughly 38.5% of all allowed integral dimensions may be realized by a Lagrangian

SCFT. Remarkably, for k ≥ 15 the ratio

%(k) =
#
{

Lagrangian dimensions in rank k
}

#
{

integral dimensions in rank k
} (2.8)

is roughly independent of k up to a few percent modulation, see e.g. table 2.

2.2 Dimension k-tuples and Dirac quantization of charge

The classification of the dimension k-tuples {∆1, · · · ,∆k} allowed in a rank-k CSG contains much

more information than the list of the individual dimensions ∆. Indeed, the values of the dimensions

of the various operators in a given SCFT are strongly correlated. The list of dimension k-tuples

may also be explicitly determined recursively in k using our Universal Dimension Formula.

The problem may be addressed at two levels: there is a simple algorithm which produces, for a

given k, a finite list of would-be dimension k-tuples. However there are subtle Number Theoretical

aspects, and some of these k-tuples are consistent only under special circumstances. The tricky

point is as follows: a special geometry is, in particular, an analytic family of polarized Abelian

varieties. The polarization corresponds physically to the Dirac electro-magnetic pairing Ω, which is

an integral, non-degenerate, skew-symmetric form on the charge lattice. Usually one assumes this

polarization to be principal, that is, that all charges which are consistent with Dirac quantization

are permitted. But physics allows Ω to be non-principal [103] at the cost of introducing additional

selection rules on the values of the electro-magnetic charges and fluxes (see §. 5.1.1 for details).
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k 1 15 16 17 18 19 20 21 22 23

%(k) 0.4 0.3859 0.375 0.3906 0.375 0.3888 0.3703 0.3647 0.375 0.3777

k 24 25 26 27 28 29 30 31 32 ∞
%(k) 0.3564 0.3663 0.3786 0.3809 0.3888 0.3909 0.3781 0.3865 0.3779 0.3858

Table 2: Values of the ratio %(k) (up to four digits) for various values of the rank k ∈ N, including
k = 1 and the asymptotic value for k =∞.

The deep arguments of ref. [30] suggest that Ω should be principal for a N = 2 QFT which

emerges from a consistent quantum theory of gravity in some decoupling limit. It turns out that

only a subset of the dimension k-tuples produced by the simple algorithm are consistent with a

principal polarization; the others may be realized only in generalized special geometries endowed

with suitable non-principal polarization i.e. to be consistent they require additional selection rules

on the electro-magnetic charges. Therefore one expects that such Coulomb dimensions would not

appear in N = 2 SCFT having a stringy construction. On the other hand, the Jacobian of a genus

g curve carries a canonical principal polarization; thus the special geometry of a SCFT with such

“non-principal” Coulomb dimensions cannot be described by a Seiberg-Witten curve.

To determine the dimension k-tuples which are compatible with a principal polarization is a

subtle problem in Number Theory. For instance, the putative dimension list in rank 2 contains the

two pairs8 {12, 6} and {12, 8} (resp. the two pairs {10/7, 8/7} and {12/7, 8/7}) but only the first

one is consistent with a principal polarization. The pair {12, 6} corresponds to rank 2 Minahan-

Nemeshansky (MN) of type E8 [35,129] (resp. {10/7, 8/7} to Argyres-Douglas (AD) model of type

A4); since this model has a stringy construction, the Number Theoretic subtlety is consistent with

the physical arguments of [30].

The reason why four of the putative rank-2 pairs {∆1,∆2} are not consistent with a principal Ω

looks rather exoteric at first sight: while the ideal class group of the number field Q[ζ] (ζ a primitive

12-th root of unity) is trivial, the narrow ideal class group of its totally real subfield Q[
√

3] is Z2,

and the narrow class group is an obstruction to the consistency of such dimension pairs in presence

of a principal polarization (a hint of why this group enters in the game will be given momentarily

in §. 2.3). To see which one of the two pairs {12, 6} or {12, 8} survives, we need to understand the

action of the narrow ideal class group; it turns out that Class Field Theory properly selects the

physically expected dimensions {12, 6}. We regard this fact as a non-trivial check of our methods.

Remark 2.2.1. Let us give a rough physical motivation for the role of Class Field Theory in our

problem. It follows from the subtle interplay between the dynamical breaking of the SCFT U(1)R
symmetry9 in the supersymmetric vacua and the Dirac quantization of charge. Along the Coulomb

branch M , the U(1)R symmetry should be spontaneously broken. But there are special holomorphic

subspaces Mn ⊂M which parametrize susy vacua where a discrete subgroup Zn ⊂ U(1)R remains

unbroken. Assuming eqn.(2.1), the locus{
ui = 0 for i 6= i0

}
⊂M (2.9)

8 Note that all three numbers 12, 8, and 6 are allowed as single dimensions in rank 2 even if Ω is principal.
9 Properly speaking, what we call “U(1)R” is the quotient group U(1)R/〈(−1)F 〉 acting effectively on the bosons.
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is such a subspace Mn with n the order of 1/∆i0 in Q\Z. To the locus Mn one associates the rational

group-algebra Q[e2πiR/∆i0 ] of the unbroken R-symmetry Zn. The chiral ring R is then a module of

this group-algebra (of non-countable dimension). Replace R by the much simpler subring I ⊂ R

of chiral operators of integral U(1)R charge; I = RM where M is the quantum monodromy of the

SCFT [60, 65]. Since ProjI ∼= ProjR [140] there is no essential loss of information in the process.

I is a C-algebra; Dirac quantization is the statement that I is obtained from a Q-algebra IQ by

extension of scalars, I ∼= IQ ⊗Q C. An element of IQ is simply a holomorphic function which

locally restricts to an element of Q[ai, bj ], where (ai, bj) are the periods of special geometry well-

defined modulo Sp(2k,Z). E.g. if our model is a Lagrangian SCFT with gauge group G of rank k,

IQ = Q[ai, bj ]
Weyl(G). IQ is a module of Q[e2πiR/∆i0 ] of just countable dimension. By Maschke

theorem [106] IQ is a countable sum of Abelian number fields

IQ =
⊕
α

Fα. (2.10)

Being Abelian, the fields Fα are best studied by the methods of Class Field Theory. On the other

hand, the Coulomb dimensions ∆(φ) are just the characters of U(1)R appearing in R

χφ : e2πitR 7→ e2πit∆(φ) ∈ C×, for φ ∈ R of definite dimension. (2.11)

Focusing on the subspace Mn ⊂M , the characters {χφ} induce characters of the unbroken subgroup

Zn. Hence the Coulomb dimensions ∆(φ) may be read from the decomposition of R into characters

of Zn. If all Coulomb dimensions are integral, R = IQ⊗QC, and the last decomposition is obtained

from the one in (2.10) by tensoring with C, so that we may read ∆(φ) directly from the Number

Theoretic properties of the Fα. The same holds in the general case, mutatis mutandis. In part IV

we shall deduce the list of allowed Coulomb dimensions by a detailed geometric analysis, but the

final answer is already given by eqn.(2.10) when supplemented with the obvious relation between

the rank k of the SCFT and the degrees of the number fields Fα.

2.3 Rank 1 and natural guesses for k ≥ 2

The case of rank one is well known [26]. The allowed Coulomb dimensions are

∆ = 1, 2, 3, 3/2, 4, 4/3, 6, 6/5, (2.12)

∆ = 1 corresponds to the free (Lagrangian) theory, ∆ = 2 to interacting Lagrangian models

(i.e. SU(2) gauge theories), and all other dimensions to strongly interacting SCFTs. A crucial

observation is that the list of dimensions (2.12) is organized into orbits of an Abelian group HR.

For k = 1 the group is simply HR ∼= Z2 generated by the involution ι

ι : ∆ 7→ ∆′ =
1

〈1−∆−1〉
,

∣∣∣∣ where, for x ∈ R, 〈x〉 denotes the real

number equal x mod 1 with 0 < x ≤ 1.
(2.13)

The Lagrangian models correspond to the fixed points of HR, ∆ = 1, 2. (2.14)

There are dozens of ways to prove that eqn.(2.12) is the correct set of dimensions for k = 1
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N = 2 SCFT; each argument leads to its own interpretation10 of this remarkable list of rational

numbers and of the group HR. Each interpretation suggests a possible strategy to generalize the

list (2.12) to higher k. We resist the temptation to focus on the most elegant viewpoints, and stick

ourselves to the most obvious interpretation of the set (2.12):

Fact. The allowed values of the Coulomb dimension ∆ for rank 1 N = 2 SCFTs, eqn.(2.12), are in

one-to-one correspondence with the elliptic conjugacy classes in the rank-one duality-frame group,

Sp(2,Z) ≡ SL(2,Z). Lagrangian models correspond to central elements (which coincide with their

class). The group HR ∼= GL(2,Z)/SL(2,Z) permutes the distinct SL(2,Z)-conjugacy classes which

are conjugate in the bigger group GL(2,Z).

By an elliptic conjugacy class we mean a conjugacy class whose elements have finite order. There

are several ways to check that the above Fact is true. The standard method is comparison with

the Kodaira classification of exceptional fibers in elliptic surfaces [166]. Through the homological

invariant [166], Kodaira sets the (multiplicity 1) exceptional fibers in one-to-one correspondence

with the quasi-unipotent conjugacy classes of SL(2,Z). In dimension 1 the homological invariant

of a CSG must be semi-simple. Since quasi-unipotency and semi-simplicity together imply finite

order, Fact follows. The trivial conjugacy class of 1 corresponds to the free SCFT, the class of

the central element −1 to SU(2) gauge theories, and the regular elliptic classes to strongly-coupled

models with no Lagrangian formulation. The map between (conjugacy classes of) elliptic elements

of SL(2,Z) and Coulomb branch dimensions ∆ is through their modular factor (cτ + d) evaluated

at their fixed point11 τ in the upper half-plane h. Explicitly:a b

c d

 ∈ SL(2,Z) elliptic −→ ∆ =
2πi

log(cτ + d)
,

∣∣∣∣∣∣ where τ is a solution to

aτ + b = τ(cτ + d),
(2.15)

and log z is the branch of the logarithm such that log(e2πix) = 2πi〈x〉 for x ∈ R (cfr. eqn.(2.13) for

the notation). The action of ι ∈ HR (eqn.(2.13)) is equivalent to12 τ ↔ τ̄ , i.e. log(cτ + d)/2πi ↔
〈1− log(cτ + d)/2πi〉.

The basic goal of the coarse-grained classification of N = 2 SCFT is to provide the correct

generalization of the above Fact to arbitrary rank k. The natural guess is to replace the rank-

one duality group SL(2,Z) by its rank-k counterpart, i.e. the Siegel modular group Sp(2k,Z),

and consider its finite-order conjugacy classes. Now the fixed-point modular factor, Cτ + D, is a

k × k unitary matrix with eigenvalues λi, (i = 1, . . . , k and |λi| = 1), to which we may tentatively

associate the k-tuple {∆i}ki=1 of would-be Coulomb dimensions

∆i = 1 +
2πi− log λi

log λ1
∈ Q≥1 for i = 1, 2, . . . , k, (2.16)

10 To mention just a few: the set of Z2-orbits in eqn.(2.12) is one-to-one correspondence with: (i) Coxeter labels of
the unique node of valency > 2 in an affine Dynkin graph which is also a star; (ii) Coxeter numbers of semi-simple
rank-2 Lie algebras; (iii) degrees of elliptic curves written as complete intersections in WPS, (iv) and so on.

11 The locus of fixed points in H of an elliptic element of the modular group SL(2,Z) is not empty and connected,
see Lemma 10.2.1. Note that (cτ + b), being a root of unity, is independent of the chosen τ in the fixed locus.

12 τ̄ is in the lower half-plane; to write everything in the canonical form, one should conjugate it to a point in the
upper half-plane by acting with the proper orientation-reversing element of GL(2,Z).
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giving a putative 1-to-k correspondence13 between Sp(2k,R)-conjugacy classes of elliptic elements in

the Siegel group Sp(2k,Z) and would-be dimension k-tuples. The candidate correspondence (2.16)

reduces to the Kodaira one for k = 1, and is consistent with the physical intuition of Remark

2.2.1.

It turns out that for k ≥ 2 the guess (2.16) is morally correct, but there are many new phenomena

and subtleties with no counterpart in rank 1, so the statement of the correspondence should be

taken with a grain of salt, and supplemented with the appropriate limitations and specifications,

as we shall do in part IV. In particular, the same k-tuple {∆i}ki=1 is produced by a number ≤ k

of distinct conjugacy classes; in facts, the geometrically consistent k-tuples are those which appear

precisely k times (properly counted).

In rank k ≥ 2 the notion of “duality-frame group” is subtle. The Siegel modular group Sp(2k,Z)

is the arithmetic group preserving the principal polarization. If Ω is not principal, Sp(2k,Z) should

be replaced by the arithmetic group S(Ω)Z which preserves it

S(Ω)Z =
{
m ∈ GL(2k,Z) : mtΩm = Ω

}
. (2.17)

Sp(2k,Z) and S(Ω)Z are commensurable arithmetic subgroups of Sp(2k,Q) [197]. If a SCFT has a

non-principal polarization Ω, its Coulomb dimensions are related to the elliptic conjugacy classes

in S(Ω)Z which (in general) lead to different eigenvalues λi and Coulomb dimensions ∆i.

As in the k = 1 case, the dimension k-tuples {∆i}ki=1 form orbits under a group. The most

naive guess is that this is the “automorphism group” of eqn.(2.16), Zk oZk2, where the first factor

cyclically permutes the λi while Zk2 is the straightforward generalization of ι for k = 1 :

ιj : log λi/2πi 7−→

{
〈1− log λj/2πi〉 for i = j

log λi/2πi otherwise,
j = 1, 2, . . . , k. (2.18)

However, in general, this action would not map classes in Sp(2k,Z) to classes in the same group

but rather in some other arithmetic group S(Ω)Z. The proper generalization of the k = 1 case

requires to replace14 Zk2 by the Abelian group HR which permutes the Sp(2k,R)-conjugacy classes

of elliptic elements of the Siegel modular group Sp(2k,Z) which are conjugate in GL(2k,C). HR is

a subgroup of the group (2.18), i.e. we have an exact sequence

1→ HR → Zk2 → C → 1 (2.19)

for some 2-group C. In the simple case when the splitting field K of the elliptic element has class

number 1, C is just the narrow class group Cnar
k of its maximal totally real subfield k ⊂ K. For

instance, the dimension pair {12, 6} (the k = 2 E8 MN model mentioned before) is reproduced by

eqn.(2.16) for log λ1 = 2πi/12 and log λ2 = 14πi/12; applying naively eqn.(2.18) we would get the

dimension pair ι2{12, 6} = {12, 8}. However in this case ι2 6∈ HR, and the HR-orbit of {12, 6} does

not contain {12, 8} which then is not a valid dimension pair for k = 2 for the duality-frame group

13 Since we have a k-fold choice of which eigenvalue we wish to call λ1.
14 Zk2 is the group which permutes the Sp(2k,R)-conjugacy classes of elliptic elements of the real group Sp(2k,R)

which are conjugate in GL(2k,C). However some real conjugacy class may have no integral element, and only a
subgroup survives over Z. This implies that HR is indeed a subgroup of Zk2 .
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Sp(2k,Z) but it is admissible if the duality-frame group is S(Ω)Z with det Ω = 2 or larger.

Remark 2.3.1. The generalization to higher k of the k = 1 criterion (2.14) for the Coulomb

dimensions to be consistent with a weakly-coupled Lagrangian description is as follows. Let ι ∈ HR
be given by

ι = ι1 ι2 · · · ιk. (2.20)

If a dimension k-tuple {∆1, · · · ,∆k} may be realized by a Lagrangian SCFT then it is left invariant

by ι up to a permutation of the ∆i. The inverse implication is probably false.

2.4 Springer Theory of reflection groups

The proposed dimension formula (2.16) may look puzzling at first. Being purportedly universal,

it should, in particular, reproduce the correct dimensions for a weakly-coupled Lagrangian SCFT

with gauge group an arbitrary semi-simple Lie group G. By the non-renormalization and Harrish-

Chandra theorems [122], in the Lagrangian case the dimension k-tuple {∆i} is just the set {di} of

the degrees of the Casimirs of G (its exponents +1). Thus eqn.(2.16), if correct, implies a strange

universal formula for the degrees of a Lie algebra which looks rather counter-intuitive from the Lie

theory viewpoint.

The statement that (2.16) is the correct degree formula (not just for Weyl groups of Lie algebras,

but for all finite reflection groups) is the main theorem in the Springer Theory of reflection groups

[38,83,237], We shall see in §. 10.3.5 that the correspondence between our geometric analysis of the

CSG and Springer Theory is more detailed than just giving the right dimensions. In particular,

Springer Theory together with weak-coupling QFT force us to use in eqn.(2.16) the universal

determination of the logarithm we call log (see after eqn.(14.2)), which is therefore implied by

conventional Lagrangian QFT.

In other words, the proposed Universal Dimension Formula (2.16) may also be obtained using

the following

Strategy. Write the usual dimension formula valid for all weakly-coupled Lagrangian SCFTs in

a clever way, so that it continues to make sense even for non-Lagrangian SCFT, i.e. using only

intrinsic physical data such as the breaking pattern of U(1)R. This leads you to eqn.(2.16). Then

claim the formula to have general validity.

This is the third heuristic derivation of (2.16) after the ones in §.1.2 and 1.3. The sheaf-

theoretic arguments of §. 10.3.4 will make happy the pedantic reader (at least we hope). It will also

supplement (2.16) all the required specifications and limitations.

Remark 2.4.1. Inverting the argument, we may say that our analysis of the CSG yields a (simpler)

transcendental proof of the classical Springer results.

3 Introduction to rank k = 1 theories

The classification of all 4d N = 2 SCFTs of rank k may be (essentially) reduced to the geometric

problem of classifying all dimension k special geometries [19, 20, 26, 27, 103, 104, 223, 224]. This

classification is naturally organized in two distinct steps. At the coarse-grained level one lists
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the allowed k-tuples {∆1,∆2, · · · ,∆k} of dimensions of operators generating the Coulomb branch

(see refs. [18, 24, 52] for recent progress on this problem). Then we have the fine classification of

the physically inequivalent models belonging to each coarse-grained class, that is, the list of the

distinct QFT which share the same dimension k-tuple. Theories in the same coarse-grained class

differ by invariants like the flavor symmetry group, the conformal charges kF , a, c, and possibly by

subtler aspects. For k = 1 the fine classification has been worked out by Argyres et al. in a series

of remarkable papers [19–23]. To restrict the possibilities, these authors invoke some physically

motivated conjectures like “planarity”, “absence of dangerous irrelevant operators”, and “charge

quantization”.

The purpose of part III is to revisit the fine classification for k = 1, introducing new ideas and

techniques which we hope may be of help for a future extension of the fine classification beyond

k = 1. In the process we shall greatly simplify and clarify several points of the k = 1 case and

provide proofs of (versions of) the above conjectures.

We borrow the main ideas from Diophantine Geometry15. We hope the reader will share our

opinion that Special Arithmetic [53] is a very beautiful and deep way of thinking about Special

Geometry.

Traditionally, Special Geometry is studied through its Weierstrass model. In this note we

advocate instead the use of the Kodaira-Néron model, which we find both easier and more powerful.

The Kodaira-Néron model E of the (total) space X of a non-trivial16 rank-1 special geometry is a

(smooth compact) relatively minimal, elliptic surface17, with a zero section S0, which happens to

be rational (so isomorphic to P2 blown-up at 9 points). E is equipped with a marked fiber F∞ which

must be unstable18, that is, as a curve F∞ is not semi-stable in the Mumford sense. Comparing

with Kodaira classification, we get 11 possible F∞: seven of them correspond to the (non-free)

Coulomb branch dimensions ∆ allowed in a rank-1 SCFT, and the last four to the possible non-

zero values of the β-function in a rank-1 asymptotically-free N = 2 theory. The fact that E is

rational implies inter alia the “planarity conjecture”, that is, the chiral ring R is guaranteed to be

a polynomial ring (of transcedence degree 1), R = C[u].

Basic arithmetic gagdets associated to E are its Mordell-Weil group MW(E) of “rational” sec-

tions, its finite-index sub-group MW(E)0 of “narrow” sections, and its finite sub-set of “integral”

sections, all sections being exceptional (−1)-curves on E . MW(E)0 is a finitely-generated free

Abelian group i.e. a lattice. This lattice is naturally endowed with a positive-definite, symmetric,

integral pairing

〈−,−〉NT : MW(E)0 ×MW(E)0 → Z (3.1)

induced by the Néron-Tate (canonical) height. The root system Ξ∞ of the flavor group F may

be identified with a certain finite sub-set of MW(E)0, and is completely determined by the above

arithmetic data (we shall give a sketchy picture of Ξ∞ momentarily). Given this identification, the

15 For a survey see [178].
16 Non-trivial means that X is not the product of an open curve C with a fixed elliptic curve E (equivalently: X

has at least one singular fiber); physically, non-trivial means the 4d N = 2 theory is not free.
17 A complex surface is said to be elliptic if it has a holomorphic fibration over a curve, E → C, whose generic

fiber is an elliptic curve.
18 Unstable fibers are also known as additive fibers. In this part of thesis we shall use mostly the latter name.
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list of possible flavor symmetries in rank-1 N = 2 QFT is read directly from the well-known tables

of Mordell-Weil groups for rational elliptic surfaces, see ref. [205] or the nice book [221].

The result are (of course) consistent with Argyres et al. [19–23].

The Diophantine language is useful for other questions besides classifying the flavor groups.

First it clarifies the subtler distinctions between inequivalent geometries which have the same flavor

group and invariants kF , a, c. Second, from the arithmetic point of view the gauging of a discrete

symmetry is a base change (an extension of the ground field K over which the elliptic curve is

defined). All consistent base changes are listed in table 6 of [156]; from that table one recovers the

discrete gauging classification.

3.1 A sketch of flavor symmetry in rank-1 4d N = 2 QFT

A rational (−2)-curve C on a rational elliptic surface E is called an E8-root curve if it is disjoint

from the zero section S0, i.e. iff it satisfies the three conditions

C · S0 = 0, C2 = −2, KE · C = 0. (3.2)

The name “E8-root curve” stems from the following fact. Consider the “most generic” sit-

uation19 where all fibers of the elliptic surface are irreducible curves. Physically, such a geom-

etry describes a general mass-deformation of the Minahan-Nemeshanski (MN) SCFT [190] with

flavor symmetry F = E8. On such a surface, EMN8, there are precisely 240 E8-root curves Ca
(a = 1, . . . , 240) with the property that their intersection pairing

Ca · Cb = −
〈
αa, αb

〉
Cartan

, a, b = 1, · · · , 240, (3.3)

where the αa are the roots of E8 and 〈−,−〉Cartan is the bilinear form induced by the E8 Cartan

matrix. In other words, the classes of these 240 rational curves form an E8 root system in20

H2(E ,R)⊥. This is the usual way we understand geometrically the presence of a flavor E8 symmetry

in this particular Minahan-Nemeshanski theory.

The crucial observation is that the E8-root (−2)-curves are in one-to-one correspondence with

a special class of exceptional (−1)-curves on E , namely the finite set of integral elements of the

Mordell-Weil group MW(E). Indeed, C is an E8-root curve if and only if the (−1)-curve (≡ section

of E)

S = C + S0 + F (3.4)

is integral in MW(E). In (3.4) S0 and F = −KE are the divisors of the zero section and a fiber,

respectively, = being equality in the Néron-Severi (or Picard) group.

Away from this “generic” situation, three competing mechanisms become operative:

Symmetry lift. Part of the original E8 root system gets lost. An elliptic surface E with a reducible

fiber has less than 240 integral sections and hence less than 240 E8-root curves satisfying

(3.2). Some of the E8 roots simply are no longer there. For instance, the elliptic surface

EMN7 describing a generic mass deformation of the E7 Minahan-Nemeshanski SCFT has only

126+56=182 integral sections and hence only 182 E8-root curves;

19 More precisely, the “most generic” unstable elliptic surface E .
20 H2(E ,R)⊥ denotes the subspace of classes orthogonal to the fiber and the zero section S0.
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Symmetry obstruction. Some of the E8-root curves present in E do not correspond to sym-

metries because they are obstructed by the symplectic structure Ω of special geometry. An

E8-root curve C leads to a root of the flavor symmetry F if and only if, for all irreducible

components of the fibers Fu,α,

Fu,α · C = 0. (3.5)

If our rank-1 model is not E8 MN, some fiber of E should be reducible, and hence we get

extra conditions (3.5) from the additional irreducible components. These conditions project

some E8-curves out of the root system of F. For instance, 56 of the 182 E8-root curves of

E7 MN do not satisfy (3.5), and we remain with only 126 “good” curves making the E7 root

system. The other 56 E8-root curves on EMN7 yield instead the weights of the fundamental

representation 56 of E7.

If a (−2)-curve C with the properties (3.2) satisfies (3.5) we say that it lays in good position in

the Néron-Severi lattice. Only E8-curves in good position contribute to the flavor symmetry.

The corresponding sections (3.4) are precisely the ones which are both integral and narrow;

Symmetry enhancement. Some integral sections which are not of the form (3.4) – and hence not

related to the “generic” symmetry – but lay in good position in the Néron-Severi group, get

promoted to roots of the flavor Lie algebra f = Lie(F). When both kinds of roots are present

– the ones inherited from the “original” E8 as well as the ones arising from enhancement –

the last (first) set makes the long (short) roots of a non-simply-laced Lie algebra.

In some special models the symmetry enhancement has a simple physical meaning. TheseN = 2

QFTs may be obtained by gauging a discrete (cyclic) symmetry of a parent theory. This situation

is described geometrically by a branched cover between the corresponding elliptic surfaces

f : Eparent → Egauged. (3.6)

The (−1)-curves associated with the enhanced symmetries of the gauged QFT, when pulled back to

the parent ungauged geometry Eparent, take the form (3.4) for some honest E8-root curve Ca ⊂ Eparent

laying in good position. Thus, at the level of the parent theory the “enhanced” symmetries are

just the “obvious” flavor symmetries inherited from E8-roots. The deck group of (3.6), Gal(f)

(the symmetry being gauged), is a subgroup of Aut(Eparent) and acts on the parent root system by

isometries of its lattice. The root system of Egauged is obtained by “folding” the Dynkin graph of

Eparent by its symmetry Gal(f). In these particular examples the general arithmetic construction

of the flavor symmetry F out of the Mordell-Weil group MW(Egauged) is equivalent to the physical

relation between the flavor symmetries of the gauged and ungauged QFTs.

For examples of flavor root lattices, see §.8.4.3. For examples of diagram foldings see §.9.2.

4 The categorical approach

The BPS objects of a supersymmetric theory are naturally described in terms of (C-linear) triangle

categories [8] and their stability conditions [44]. The BPS sector of a given physical theory T is

described by a plurality of different triangle categories T(a) depending on:21

21 The index a take values in some index set I.
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a) the class of BPS objects (particles, branes, local or non-local operators,...) we are interested

in;

b) the physical picture (fundamental UV theory, IR effective theory,...);

c) the particular engineering of T in QFT/string/M-/F-theory.

The diverse BPS categories T(a) are related by a web of exact functors, T(a)

c(a,b)−−−→ T(b), which

express physical consistency conditions between the different physical pictures and BPS objects.

The simplest instance is given by two different engineerings of the same theory: the duality T ↔ T ′

induces equivalences of triangle categories T(a)

d(a)−−→ T′(a) for all objects and all physical descriptions

a ∈ I. An example is mirror symmetry between IIA and IIB string theories compactified on a pair of

mirror Calabi-Yau 3-folds,M,M∨ which induces on the BPS branes homological mirror symmetry,

that is, the equivalences of triangle categories [155]

Db(CohM) ∼= Db(FukM∨), Db(CohM∨) ∼= Db(FukM).

In the same way, the functor relating the IR and UV descriptions of the BPS sector may be seen

as homological Renormalization Group, while the functor relating particles and branes may be seen

as describing properties of the combined system.

A duality induces a family of equivalences d(a), one for each category T(a), and these equivalences

should be compatible with the functors c(a,b), that is, they should give an equivalence of the full web

of categories and functors. Our philosophy is that the study of equivalences of the full functorial

web is a very efficient tool to detect dualities. We shall focus on the case of 4d N = 2 QFTs, but

the strategy has general validity. We are particularly concerned with S-dualities, i.e. auto-dualities

of the theory T which act non trivially on the UV degrees of freedom.

Building on previous work by several people22, we present our proposal for the triangle categories

describing different BPS objects, both from the UV and IR points of view, and study the functors

relating them. This leads, in particular, to a categorical understanding of the S-duality groups and

of the vev of UV line operators. The categorical language unifies in a systematic way all aspects

of the BPS physics, and leads to new powerful techniques to compute susy protected quantities

in N = 2 4d theories. We check in many explicit examples that the results obtained from this

more abstract viewpoint reproduce the ones obtained by more traditional techniques. However the

categorical approach may also be used to tackle problems which look too hard for other techniques.

Main triangle categories and functors. The basic example of a web of functors relating

distinct BPS categories for 4d N = 4 QFT is the following exact sequence of triangle categories

(Theorem 5.6 of [162]):

0→ DbΓ
s−−→ PerΓ

r−→ C(Γ)→ 0, (4.1)

where (see §. 13 for precise definitions and details):

• Γ is the Ginzburg algebra [132] of a quiver with superpotential [9] associated to the N = 2

theory at hand;

22 References to previous work are provided in the appropriate sections of the thesis.
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• DbΓ is the bounded derived category of Γ. DbΓ may be seen as a “universal envelope” of

the categories describing, in the deep IR, the BPS particle spectrum in the several BPS

chambers. To discuss states in the IR we need to fix a Coulomb vacuum u; this datum

defines a stability condition Zu on DbΓ. The category which describes the BPS particles in

the u vacuum is the subcategory of DbΓ consisting of objects which are semi-stable for Zu.

The BPS particles arise from (the quantization of the moduli of) the simple objects in this

subcategory. Its Grothendieck group K0(DbΓ) is identified with the Abelian group of the

IR additive conserved quantum numbers (electric, magnetic, and flavor charges) which take

value in the lattice Λ ∼= K0(DbΓ). DbΓ is a 3-Calabi-Yau (3-CY)23 triangle category, which

implies that its Euler form

χ(X,Y ) ≡
∑
k∈Z

(−1)k dim HomDbΓ(X,Y [k]), X, Y ∈ DbΓ

is a skew-symmetric form Λ × Λ → Z whose physical meaning is the Dirac electro-magnetic

pairing between the charges [X], [Y ] ∈ Λ carried by the states associated to the stable objects

X, Y ∈ DbΓ;

• C(Γ) is the cluster category of Γ which describes24 the BPS UV line operators. This identifica-

tion is deeply related to the Kontsevitch-Soibelmann wall-crossing formula [171], see [69,162].

The Grothendieck group K0(C(Γ)) then corresponds to the, additive as well as multiplica-

tive, UV quantum numbers of the line operators. These quantum numbers, in particular

the multiplicative ones follow from the analysis by ’t Hooft of the quantum phases of a 4d

non-Abelian gauge theory being determined by the topology of the gauge group [144–147]. ’t

Hooft arguments are briefly reviewed in §. 14.2: the UV line quantum numbers take value in

a finitely generated Abelian group whose torsion part consists of two copies of the fundamen-

tal group of the gauge group while its free part describes flavor. The fact that K0(C(Γ)) is

automatically equal to the correct UV group, as predicted by ’t Hooft (detecting the precise

topology of the gauge group!), yields convincing evidence for the proposed identification, see

§. 15.3.2. C(Γ) is a 2-CY category, and hence its Euler form induces a symmetric form on the

additive UV charges, which roughly speaking has the form

K0(C(Γ))
/
K0(C(Γ))torsion

⊗
K0(C(Γ))

/
K0(C(Γ))torsion → Z,

but whose precise definition is slightly more involved25 (see §. 13.9). We call this pairing

the Tits form of C(Γ). Its physical meaning is simple: while in the IR the masses break

(generically) the flavor group to its maximal torus U(1)f , in the deep UV the masses become

irrelevant and the flavor group gets enhanced to its maximal non-Abelian form F . Then the

UV category should see the full F and not just its Cartan torus. The datum of the group F

may be given as its weight lattice together with its Tits form; the cluster Tits form is equal to

23 See §. 13 for precise definitions. Informally, a triangle category is k-CY iff it behaves as the derived category of
coherent sheaves, Db cohMk, on a Calabi-Yau k-fold Mk.

24 This is slightly imprecise. Properly speaking, the line operators correspond to the generic objects on the
irreducible components of the moduli spaces of isoclasses of objects of C(Γ).

25 The subtleties in the definition are immaterial when the QFT is UV superconformal (as contrasted to
asymptotically-free) and all chiral operators have integral dimensions.
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the Tits form of the non-Abelian flavor group F , and we may read F directly from the cluster

category. In fact the cluster category also detects the global topology of the flavor group,

distinguishing (say) SO(N) and Spin(N) flavor groups.26 For objects of C(Γ) there is also a

weaker notion of ‘charge’, taking value in the lattice Λ of electric/magnetic/flavor charges,

namely the index, which is the quantity referred to as ‘charge’ in many treatments. Since C(Γ)

yields an UV description of the theory, there must exist relations between its mathematical

properties and the physical conditions assuring UV completeness of the associated QFT. We

shall point of some of them in §. 15.4;

• PerΓ is the perfect derived category of Γ. From eqn.(4.1) we see that, morally speaking, the

triangle category PerΓ describes all possible BPS IR object generated by the insertion of

UV line operators, dressed (screened) by particles, in all possible vacua. This rough idea is

basically correct. Perhaps the most convincing argument comes from consideration of class S
theories, where we have a geometric construction of the perfect category PerΓ [213] as well as

a detailed understanding of the BPS physics [126,127]. In agreement with this identification,

the Grothendieck group K0(PerΓ) is isomorphic to the IR group Λ. PerΓ is not CY, instead

the Euler form defines a perfect pairing

K0(DbΓ)
⊗

K0(PerΓ)→ Z;

• the exact functor r in eqn.(4.1) may be seen as the homological (inverse) RG flow.

Dualities. The (self)-dualities of an N = 2 theory should relate BPS objects to BPS objects of

the same kind, and hence should be (triangle) auto-equivalences of the above categories which are

consistent with the functors relating them (e.g. s, r in eqn.(4.1)). We may describe the physical

situation from different viewpoints. In the IR picture one would have the putative ‘duality’ group

AutDbΓ; however a subgroup acts trivially on all observables [51], and the physical IR ‘duality’

group is27

SIR ≡ AutDbΓ
/{

physically trivial autoequivalences
}

= AuteqDbΓ o Aut(Q). (4.2)

In the UV (that is, at the operator level) the natural candidate ‘duality’ group is

SUV ≡ Aut C(Γ)
/{

physically trivial
}

From the explicit description of AutDbΓ (see §.5) we learn that SIR extends to a group of

autoequivalences of PerΓ which preserve DbΓ (by definition). Hence the exact functor r : PerΓ→
26 In facts, the cluster Grothendieck group K0(C(Γ)) should contain even more detailed informations on the flavor.

For instance, in SU(2) gauge theory with Nf flavors the states of even magnetic charge are in tensor representations
of the flavor SO(2Nf ) while states of odd magnetic charge are in spinorial representation of Spin(8); K0(C(Γ)) should
know the correlation between the parity of the magnetic charge and SO(2Nf ) vs. Spin(2Nf ) flavor symmetries (and
it does).

27 For the precise definition of AuteqDbΓ, see §. 5. Aut(Q) is the group of automorphisms of the quiver Q modulo
the subgroup which fixes all nodes.
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C(Γ) in eqn.(4.1) induces a group homomorphism

SIR
r−→ SUV,

whose image is

S = r
(

AuteqDbΓ
)
o AutQ. (4.3)

S is a group of auto-equivalences whose action is defined at the operator level, that is, independently

of a choice of vacuum. They are equivalences of the full web of BPS categories in eqn.(4.1). Thus S
is the natural candidate for the role of the (extended) S-duality group of our N = 2 model. Indeed,

in the examples where we know the S-duality group from more conventional considerations, it

coincides with our categorical group S. In this survey we take equation (4.3) as the definition of

the S-duality group.

Clearly, the essential part of S is the group r(AuteqDbΓ). It turns out that precisely this

group is an object of central interest in the mathematical literature which provides an explicit

combinatorial description of it [115]. This combinatorial description is the basis of an algorithm for

computer search of S-dualities, see §. 17. If our N = 2 theory is not too complicated (that is, the

ranks of the gauge and flavor group are not too big) the algorithm may be effectively implemented

on a laptop, see §. 17 for explicit examples.

For class S theories, the above combinatorial description of S-duality has a nice geometric

intepretation as the (tagged) mapping class group of the Gaiotto surface, in agreement with the

predictions of [123] (see also [13]), see §. 5.2. More generally, for class S theories all categorical

constructions have a simple geometric realization which makes manifest their physical meaning.

The IR group SIR may be understood in terms of duality walls, see §.16.3.

Cluster characters and vevs of line operators. The datum of a Coulomb vacuum u defines

a map

〈− 〉u : GenOb(C
(
Γ)
)
→ C,

given by taking the vev in the vacuum u of the UV line operator associated to a given generic

object of the cluster category C(Γ). Physically, the renormalization group implies that the map

〈− 〉u factors through the (Laurent) ring Z[L] of line operators in the effective (Abelian) IR theory.

The associated map

GenOb(C
(
Γ)
)
→ Z[L]

is called a cluster character and is well understood in the mathematical literature. Thus the theory

of cluster character solves (in principle) the problem of computing the vev of arbitrary BPS line

operators (see §.19).
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Part II

Geometric structure of a 4d N = 2 SCFT
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5 Special cones and log-Fano varieties

In this section we review special geometry and related topics to set up the scene. The first three

subsections contain fairly standard material; our suggestion to the experts is to skip them (except

for the disclaimer in §.5.1.1). Later subsections describe basic properties of conic special geometries

(CSG) which were not previously discussed in the literature: we aim to establish that a CSG is

an affine (complex) cone over a special kind of normal projective manifold: a simply-connected

log-Fano with minimal Hodge numbers.

5.1 Special geometric structures

In this thesis by a “special geometry” we mean a holomorphic integrable system with a Seiberg-

Witten (SW) meromorphic differential [103,104,120]:

Definition 1. By a special geometry we mean the following data:

D1: A holomorphic map π : X → M between two normal complex analytic manifolds, X and M ,

of complex dimension 2k and k, respectively, whose generic fiber is (analytically isomorphic

to) a principally polarized Abelian variety. π is required to have a zero-section. The closed

analytic set D ⊂M at which the fiber degenerates is called the discriminant. The dense open

set M ] ≡M \ D is called the regular locus;

D2: A meromorphic 1-form (1-current) λ on X (the Seiberg-Witten (SW) differential) such that dλ

is a holomorphic symplectic form on X, with respect to which the fibers of π are Lagrangian.

5.1.1 Three crucial caveats on the definition

The one given above is the definition which is natural from a geometric perspective. However in

the physical applications one also considers slightly more general situations which may easily be

reduced to the previous one. This aspect should be kept in mind when making comparison of our

findings with existing results in the physics literature. We stress three aspects:

Multivalued symplectic forms. In Definition 1 X is globally a holomorphic integrable

system with a well-defined holomorphic symplectic form dλ. Since the overall phase of the SW

differential λ is not observable, in the physical applications sometimes one also admits geometries

in which λ is well-defined only up to (a locally constant) phase, see [26] for discussion and examples.

Let C be the Coulomb branch of such a generalized special geometry; there is an unbranched cover

of the regular locus, M ] → C], on which λ is univalued. M ] is the regular locus of a special

geometry in the sense of Definition 1. The cover branches only over the discriminant D. Dually,

we have an embedding of chiral rings RC ↪→ RM . Away from the discriminant, there is little

difference between the two descriptions: working in C we identify vacua having the same physics,

while in M we declare them to be distinct states (with the same physical properties). In the first

picture we consider non-observable the chiral operators which distinguish the physically equivalent

Coulomb vacua, that is, RC
∼= RG

M , where G is the (finite) deck group of the covering. RC is still

free iff G is a reflection group [82, 232] acting homogeneously; in this case, the dimensions of its

generators are multiples of the ones for RM .

26



The two special geometries C and M may lead to different ways of resolving the singularities

along D, and hence they may correspond to physical inequivalent theories in the “same” coarse class.

It may happen that we may attach physical sense only to the chiral sub-ring RC . To compare our

results with those of papers which allow multivalued λ, one should first pull-back their geometries

to a cover on which the holomorphic symplectic form is univalued.

Non-principal polarizations. In Definition 1 the generic fiber of X →M is taken to be a

principally polarized Abelian variety. As already stressed in the Introduction, we may consider non

principal-polarization. This means that not all electric/magnetic charges and fluxes consistent with

Dirac quantization are present in the system [103]. This is believed not to be possible in theories

arising as limits of consistent quantum theories containing gravity [30]. Every non-principally

polarized Abelian variety has an isogenous principally polarized one [139,180].

We see the polarization of the regular fiber Xu as a primitive,28 integral, non-degenerate, pairing

[149,180]

〈−,−〉 : H1(Xu,Z)×H1(Xu,Z)→ Z (5.1)

which has the physical interpretation of the Dirac electro-magnetic. We may find generators γi of

the electro-magnetic charge lattice H1(Xu,Z) so that the matrix Ωij ≡ 〈γi, γj〉 takes the (unique)

canonical form [203]

Ω =

 0 e1

−e1 0

⊕ 0 e2

−e2 0

⊕ · · ·
⊕ 0 ek

−ek 0

 , ei ∈ N, ei | ei+1, e1 ≡ 1. (5.2)

The polarization is principal iff ei = 1, i.e. det Ω = 1. Physically, the integers ei are charge

multipliers: (in a suitable duality frame) the allowed values of the i-th electric charge are integral

multiples of ei.

If Ω is principal, the duality-frame group is the Siegel modular group Sp(2k,Z), while in general

it is the commensurable arithmetic group S(Ω)Z, eqn.(2.17). Since, as mentioned in the Introduc-

tion, the Coulomb dimensions {∆i} are related to the possible elliptic subgroups of the duality-frame

group, there is a correlation between the set of charge multipliers {ei} and the set of dimensions

{∆i}. The simplest instance of this state of affairs appears in rank 2: the set of dimensions {12, 8}
is not allowed for Ω principal, but it is permitted when the charge multiplier e2 is (e.g.) 2 or 3.

Non-normal Coulomb branches and “non-free” chiral rings. In Definition 1 the

Coulomb branch M is taken to be normal as an analytic space, that is, we see the Coulomb branch

as a ringed space (M,OM ) where M is a Hausdorf topological space and OM is the structure sheaf

whose local sections are the local holomorphic functions. Being normal means that the stalks OM,x

at all points x ∈M are domains which are integrally closed in the stalk Mx of the sheaf of germs

of meromorphic functions [134, 136]. Geometrically this is the convenient and natural definition;

indeed, there is no essential loss of generality since we may always replace a non-normal analytic

space M0 by its normalization M : just replace the structure sheaf OM0 with its integral closure OM
and the topological space M0 by the analytic spectrum M of OM [136]. Roughly speaking, passing

28 That is, the matrix of the form Ωij ∈ Z(2k) satisfies gcdi,j{Ωij} = 1.
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to the normalization just enlarges the ring of the holomorphic functions from global sections of

OM0 to global sections of OM . In facts, the normalization corresponds to the maximal extension

of the ring of local holomorphic functions compatible with OM0-coherence. Thus, geometrically,

a non-normal Coulomb branch just amounts to “forget” some (local) holomorphic function. The

simplest example of a non-normal analytic space is the plane cuspidal cubic whose ring of regular

functions is C[u1, u2]/(u2
1 − u3

2). Its normalization is the affine line with ring C[t], corresponding

to the parametrization u1 = t3, u2 = t2. In this example the normalization ring Γ(M,OM ) has

the (topological) basis 1, t, t2, t3, · · · while the basis of the non-normal version, Γ(M0,OM0), is

1, t2, t3, · · · where one “forgets” the function t.

From the physical side the situation is subtler. We define the (geometric) chiral ring R to

be the Frechét ring of the global holomorphic functions R ≡ Γ(M,OM ). This geometric ring

may or may not coincide with the physical chiral ring Rph, defined as the ring of holomorphic

functions on M ] ⊂ M which may be realized as vacuum expectation values of a chiral operator.

Clearly Rph ⊂ R, and we get the physical ring by “forgetting” some holomorphic function. Then

Rph = Γ(Mph,Oph) where the stalks of Oph are domains29 which may or may not be integrally

closed. In the second case the physics endows the Coulomb branch with the structure of a non-

normal analytic space (Mph,Oph). Geometrically it is natural to replace it with its normalization

(M,OM ) while proclaiming that only a subring Rph of the chiral ring R is a ring of physical

operators. Notice that the full geometric ring R may be a free polynomial ring, C[u1, · · · , uk],
while the physical ring Rph is a non-free finitely-generated ring, as the example of the cuspidal

cubic shows.

The putative “non-free” Coulomb branch geometries of ref.[15] arise this way: they are non-

normal analytic spaces whose normalization has a free polynomial ring of regular functions, C[u1, · · · , uk].
That is, the “non-free” chiral rings are obtained from free geometric rings by forgetting some holo-

morphic functions of R. The physical rationale for “forgetting” functions is the unitarity bound.

In a CSG R is graded by the conformal dimension ∆, and unitarity requires that a non-constant

physical holomorphic function has ∆ ≥ 1. Hence one is naturally led to the proposal

Rph = R∆≥1 ≡ C · 1⊕
{
φ ∈ R : ∆(φ) ≥ 1

}
⊂ R. (5.3)

If 0 < ∆(φ) < 1 for some φ ∈ R, Rph defines a non-normal structure sheaf Oph and the physical

ring is non-free. Is this fancy possibility actually realized?

The equations determining the dimensions ∆i for the normalization M of a CSG (satisfying

our regularity conditions), deduced in §. 10.3.4 below, always have a (unique) solution such that

∆(φ) ≥ 1 for all φ ∈ R, φ 6= 1, with equality precisely when φ is a free field. Indeed, with the log

determination of the logarithm, the formula (2.16) expresses ∆i as 1 plus a manifestly non-negative

quantity. To produce Rph 6= R, we may try to replace log by some bizzarre branch of the logarithm,

with the effect that ∆(φ)→ ∆(φ)new = 2−∆(φ), so that an element with 1 < ∆(φ) < 2 would be

reinterpreted as having the dimension 0 < ∆(φ)new < 1. However this is extremely unnatural and

gruesome since it will spoil the universality of the prescription to compute the dimension ∆ that

better be the same one for all SCFT and all chiral operators (the correct prescription should be

the unique one which reproduces the correct results for Lagrangian QFT, see §.2.4.

29 Because the Coulomb branch is reduced.
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Assuming universality, the fancy possibilities of ref.[15] cannot be realized, and we shall neglect

them for the rest of this thesis. If the reader is aware of physical motivations for their existence

and wants to study them, he needs only to perform the non-universal analytic continuation of the

relevant formulae.

For most of the thesis we focus on special geometries in the sense of Definition 1, with

Rph = R and principally polarized fibers. Occasionally we comment on the modifications required

for non-principal Ω.

5.1.2 Review of implied structures

The data D1, D2 imply the existence of several canonical geometric structures. We recall just the

very basic ones (many others may be obtained by the construction in S5):

S1: (polarized local system) A local constant sheaf Γ on M ] with stalk ∼= Z2k equipped with a

skew-symmetric form 〈−,−〉 : Γ×Γ→ Z under which Γ ' Γ∨. Γ is given by the holomogy of

the fiber Γu = H1(π−1(u),Z) with the intersection form given by the principal polarization;

S2: (flat Gauss-Mannin connection) On the holomorphic bundle E = Γ∨ ⊗OM over M ], we have

the flat holomorphic connection ∇GM defined by the condition that the local sections of Γ∨

are holomorphic;

S3: (monodromy representation) m : π1(M ])→ Sp(2k,Z);

S4: (Hodge bundle) V →M ]: it is the holomorphic sub-bundle of E whose fibers are (1,0) cohomol-

ogy classes, i.e. Vu = H0(π−1(u),Ω1). The flat connection ∇GM of E induces the sub-bundle

(holomorphic) connection ∇H on V [55,137]. Note that Γ∨ acts by translation on V and that

V/Γ∨ ∼= X] ≡ π−1(M ]);

S5: (period map and the family of homogeneous bundles) the period matrix τ ij of the Abelian

variety π−1(u) is a complex symmetric matrix with positive imaginary part well defined up

to Sp(2k,Z) equivalence; hence τ defines the holomorphic map:

τ : M ] → Sp(2k,Z)
∖
Sp(2k,R)

/
U(k). (5.4)

The period map τ yields a universal construction of many other canonical geometrical objects

on M ]. We limit ourselves to a special class of holomorphic ones. The Griffiths period domain

Sp(2k,R)/U(k) is an open domain in its complex Griffiths compact dual [55,137,138]

Sp(2k,R)/U(k) ⊂ Sp(2k,C)/P (k),
where P (k) ⊂ Sp(2k,C) is the

Siegel parabolic subgroup.
(5.5)

By general theory, to every P (k)-module (in particular to all U(k)-modules) we associate a

holomorphic vector bundle over the compact dual equipped with a unique metric, complex

structure, and connection having an explicit Lie theoretic construction [55]. These bundles,

metrics, and connections may be restricted to the period domain and then pulled back to

M ] via τ to get God-given bundles, metrics, and connections on M ]. All the quantities of

“special geometry” (including the Kähler metric) arise in this way from Lie theoretic gadgets.
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For instance, the Hodge bundle V (resp. the flat bundle E) is the pull back of a homogenous

bundle, and the connections ∇H and ∇GM are the pull-back of the corresponding canonical

connections on the symmetric space (5.5);

S6: (periods and local special coordinates) Let U ⊂M ] be simply connected. We trivialize Γ in U

choosing local sections making a canonical symplectic basis (Ai, Bj), i, j = 1, . . . , k,

〈Ai, Aj〉 = 〈Bi, Bj〉 = 0, 〈Ai, Bj〉 = δij . (5.6)

The local special (holomorphic) coordinates ai and their duals bi are (in U)

ai = 〈Ai, λ〉, bi = 〈Bi, λ〉. (5.7)

Writing

(V|U )smooth ≡ (Γ∨ ⊗ R)|U = U ×
(
Aixi +Bjy

j
)
, (yj , xi) ∈ R2k, (5.8)

the holomorphic symplectic form becomes

σ = dλ = dai ∧ dxi + dbi ∧ dyi = dai ∧
(
dxi +

∂bj
∂ai

dyj
)
. (5.9)

Since the holomorphic coordinates along the fiber are zi = xi + τijy
j we get

τ ij =
∂bi
∂aj

. (5.10)

Since τ ij is symmetric, locally there exists a prepotential (holomorphic) function F(aj) such

that

bi =
∂F(aj)

∂ai
, τ ij(a) =

∂2F
∂ai∂aj

. (5.11)

S7: (the dual bundle V∨ ' E/V) This is yet another bundle whose metric and connection is given

by the general construction in S5. It coincides with TM ], so it yields the geometry of the

base. On the intersection of two special coordinate charts U , U ′ we have:b′
a′

 =

A B

C D

b
a

 ,
y′
x′

 =

A B

C D

−t y
x

 ,
A B

C D

 ∈ Sp(2k,Z), (5.12)

so that the periods (ai, bi) are flat sections of E∨ ' E . The holomorphic tangent bundle TM ] is

then identified with the quotient bundle E/V (again the pull-back of a homogeneous bundle).

In particular, the flat connection ∇GM induces canonically a quotient bundle connection ∇Q

on E/V, that is, on TM ]. Taking the differential and using dbi = τ ij da
i we get the modular

transformation of the k × k period matrix τ

τ = (Aτ +B)(Cτ +D)−1; (5.13)

S8: (the hyperKähker structures on X] and V) On the total space of V, equivalently of the flat

real bundle Γ ⊗ R, there is a hyperKähler structure (Ia, g) invariant under translation by
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local sections of Γ ⊗ R; then (Ia, g) descends to a hyperKähler structure on the total space

of H] [64]. The complex structure of V is the ζ = 0 one in hyperKähler P1-family of complex

structures. We give the hyperKähler structure by presenting the explicit P1-family of local

holomorphic Darboux coordinates Xa(ζ) = (qi(ζ), pi(ζ)) satisfying the reality condition [124]

Xa(ζ) = −Xa(−1/ζ̄ ), (5.14)

such that the holomorphic symplectic form in complex structure ζ ∈ P1 is

Ω(ζ) = − i

2 ζ
ω+ + ω3 −

i

2
ζ ω− = dpi(ζ) ∧ dqi(ζ), where ω± = ω1 ± ω3, (5.15)

and ωα (α = 1, 2, 3) are the three Kähler forms. We have

qi(ζ) =
1

ζ
ai + iyi + ζ ai, pi(ζ) =

1

ζ
bi + ixi + ζ bi, (5.16)

hence

ω+ = 2
(
dai ∧ dxi − dbi ∧ dyi

)
, ω3 = dbi ∧ dāi + db̄i ∧ dai. (5.17)

S9: (fiber metric and Chern connection on V) Restricting the hyperKähler metric along the fibers,

we get a Hermitian metric and associated Chern connection on the holomorphic bundle V. By

uniqueness of the homogeneous connection, is coincides with the sub-bundle connection ∇H .

The Hermitian metric is simply ‖z‖2 = yijziz̄j where yij is the inverse matrix of yij = 2 Im τ ij ;

S10: (Special Kähler metric on M ] and its global Kähler potential) In the same way, restricting

the hyperKähler metric on V to the zero section (which is a holomorphic subspace in ζ = 0

complex structure) we get a Kähler metric on M ] whose Kähler form is the restriction of ω3.

The restriction to the zero-section yields a Kähler metric on M ] with Kähler form

ω3|M] =
(
τ ij(a)− τ ij(ā)

)
dai ∧ dāj , τ ij(a) ≡ ∂ai∂ajF , Im τ ij(a) > 0. (5.18)

We note that the assumption of the existence of a SW differential implies the existence of a

globally defined Kähler potential on M ]:

Φ = −i
(
bi ā

i − ai b̄i
)
. (5.19)

Again, by uniqueness of the homogeneous connection, the Levi-Civita connection ∇LC of

this Kähler metric is the quotient-bundle connection ∇Q. In other words, all the relevant

connections are just projections of the flat one.

S11: (The cubic symmetric form of the infinitesimal Hodge deformation) This is a symmetric

holomorphic cubic form of type (3,0)

�3 TM ] → OM , (5.20)

describing the infinitesimal deformation of Hodge structure (of the Abelian fiber) in the sense
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of Griffiths [137]. Locally in special coordinates it is given just by

Tijk =
∂3F

∂ai∂aj∂ak
. (5.21)

Remark 5.1.1. For k = 1 a special structure is, in particular, a surface fibered over a curve whose

general section is an elliptic curve. Hence the possible local behaviors (i.e. degenerations of fibers)

are described by the classical Kodaira papers [166]. In his terminology, S3 is called the homological

invariant and S5 the analytic invariant.

Example 1 (k = 1 locally flat special structures30). In this thesis we are interested in conic special

structures. Since in real dimension 2 all metric cones are locally flat, for k = 1 we are reduced to

study flat special geometries whose discriminant is a single point. The hyperKähler manifold X]

then is locally isometric to R4 ∼= H, and the singular hyperKähler geometry should be of the form

C2/G with G a finite subgroup of SU(2). One checks that conformal invariance requires the group

G to correspond via the McKay correspondence to an affine Dynkin graph which is a star, that is,

D4, E6, E7, or E8. Before resolving the singularity, the spaces Xsing are the well-known Du Val

singular hypersurfaces31 in C3 [28]

D4 : y2 − h3(x, u) = 0, E6 : y2 − 4x3 + u4 = 0,

E7 : y2 − 4x3 + u3x = 0, E8 : y2 − 4x3 + u5 = 0.
(5.22)

That u : Xsing → C is an elliptic fibration (with section) is obvious by reinterpreting Du Val

singularities as the Weierstrass model of a family of elliptic curve parametrized by u. The crepant

resolution X of Xsing is given by the corresponding ALE space. For each of the four special

geometries we have a priori two distinct special structures. Indeed, we have two dual choices for

the SW differential λ: I) a holomorphic section of V with no zero in M ] ≡ {u 6= 0} which vanish in

the limit u → 0 to order at most 1, or II) a holomorphic section of V∨ with the same properties.

Note that these properties fix λ uniquely up to an irrelevant overall constant. In terms of the

Weierstrass model the two dual choices read:

I) λ = u
dx

y
, II) λ =

x dx

y
. (5.23)

The corresponding Coulomb branch dimensions are

D4 E6 E7 E8

I) 2 3 4 6

II) 2 3
2

4
3

6
5

(5.24)

which is the correct list of (non-free) ∆’s for k = 1. The periods can be easily computed using

30 We shall return several times to this Example in the section. The present discussion is meant as a mere
appetizer.

31 In eqn.(5.22) h3(x, u) stands for a homogeneous cubic polynomial in x, u.
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Weierstrass elliptic functions32. As an example, we write them for E8:

I)

a
b

 ≡ u
eiπ/3ω1

ω1

 =
Γ(1

3)3

4π

eiπ/3
1

u1/6, II)

b
a

 ≡
eiπ/3η3

η3

 =
2π2e−πi/3√

3 Γ(1
3)3

eiπ/3
1

u5/6

from which it is obvious that the dimension of u is 6 and respectively 6/5. In the dual choice

the role of a and b get interchanged, since the non-trivial element of HR inverts the sign of the

polarization. Of course, the resolutions of the singularity at u = 0 are different in the two cases,

the exceptional locus being Kodaira exceptional fiber of type II∗ and II, respectively. The periods

of dx/y and x dx/y scale with opposite power of u by the Legendre relation.

5.1.3 Rigidity principle and reducibility

A basic trick of the trade is that global properties in special geometry fix everything. This principle

is known as “the Power of Holomorphy” [226]; mathematicians call it rigidity.

Proposition 5.1.1 (Rigidity principle [55]). Two special geometries with the same compact base

M , isomorphic monodromy representations, and isomorphic fibers over one point, are equivalent.

Thus the monodromy representation S3 essentially determines the special structure. In partic-

ular, if the monodromy representation splits m = m1 ⊕m2 (over33 Z) then the special geometry is

a product.

5.1.4 Curvature properties of special geometry

Let W be a holomorphic Hermitian vector bundle with Chern connection ∇. We consider a holo-

morphic sub-bundle S ⊂ W and the quotient bundle Q =W/S equipped with the sub-bundle and

quotient connections ∇S and ∇Q, respectively. The curvature of ∇S (resp. ∇Q) is bounded above

(resp. below) by the one of ∇, see [139] page 79 or [55]. Applying this principle to E , V and E/V
we get:

Proposition 5.1.2. The curvature of the bundle V is non-positive, while the curvature of the

Kähler metric on M ] is non-negative (in facts, positive). In particular, the Ricci curvature of M ]

is non-negative, Ri̄ ≥ 0 and it vanishes iff M ] is locally flat.

Let us give an alternative proof of the last statement.

Proof. In a Kähler manifold the Ricci form is34 ρ = −i∂∂̄ log det g. Thus from (5.18)

ρ = −i∂∂̄ log det Im τ kl(a) ≡ τ ∗Ω (5.25)

where Ω is the (positive) Kähler form on the locally Hermitian space in eqn.(5.4). Note that Ri̄ = 0

only at critical points of the period map τ . By Sard theorem, the set of periods τ ij(a) at which

Ri̄ = 0 has zero measure. In particular Ri̄ ≡ 0 means τ = (a constant map), so M ] is locally

flat.
32 Notations as in DLMF §.23 [206].
33 If the splitting is over Q, the geometry is a product up to an isogeny in the fiber.
34 Cfr. [37] eqn.(2.98).
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Remark 5.1.2. This result may also be understood as follows. The total space of the holomorphic

integrable system, X, is hyperKähler, so carries a Ricci-flat metric. M is a complex subspace, and

the Ricci curvature of its induced metric is minus the curvature of the determinant of the normal

bundle whose Hermitian metric is (det Im τ )−1.

Sectional and isotropic curvatures. From the above Proposition it is pretty obvious that

all sectional curvatures of a special Kähler metric are non-negative. A stronger property is that

all its isotropic curvatures are non-negative. Indeed, we claim an even stronger statement, that is,

that the curvature operators are non-negative at all points p.

Definition 2. Let X be a Riemannian n-fold with tangent space TpX at p ∈ X. The curvature

operator at p is the self-adjoint linear operator

R : ∧2 TpX → ∧2TpX, (5.26)

given by the Riemann tensor. We say that X has positive (resp. weakly positive) curvature operators

iff the eigenvalues of R are positive (resp. non-negative) at all p ∈ X.

The claim follows from the explicit form of the Riemann tensor

Rij̄kl̄ = Tikm T̄j̄ l̄n̄ g
mn̄, (5.27)

where T is the cubic symmetric form of the infinitesimal Hodge deformation (structure S11).

Sphere theorems. The positivity of the curvature operators has dramatic implications for the

topology of X. We collect here some results which we shall use later in the thesis:

Theorem 1 (Meyers [199]). Let X be a complete Riemannian manifold of metric g whose Ricci

curvature satisfies R ≥ λ2g with λ > 0 a constant. Then X is compact with diameter d(X) ≤ π/λ.

Applying the result to the Riemannian universal cover X̃ of X, we conclude that π1(X) is finite.

Remark 5.1.3. There is a version of Meyers theorem which applies to orbifolds, see Corollary 21

in [40] or Corollary 2.3.4 in [252]. In case of Riemannian orbifolds complete should be understood

as complete as a metric space. The version in [252] states that a metrically complete Riemannian

orbifold X, whose Ricci curvature satisfies R ≥ λ2g, is compact with a diameter d(X) ≤ π/λ.

Theorem 2 (Synge [239]). An even dimensional compact orientable manifold with positive sectional

curvature is simply-connected.

Remark 5.1.4. Again the result extends to Riemannian orbifolds, see Corollary 2.3.6 of [252], so

that an even dimensional orientable complete Riemannian orbifold with positive sectional curvature

is simply connected.

Theorem 3 (Micallef-Moore [185], Böhm-Wilking [39]). Let X be a compact n-dimensional Rie-

mannian orbifold. If X has positive curvature operators it is diffeomorphic to a space form Sn/G,

Sn being the sphere and G a finite subgroup of SO(n+ 1).
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The special Kähler manifolds M have just weakly positive curvature operators (and are typically

non-compact). However, taking Theorems 1, 3 together, one gets the rough feeling that the non-

flat special Kähler manifolds are “close” to being locally spheres. The statement will become precise

under the assumption that M is also a cone.

5.1.5 Behavior along the discriminant

We need to understand the behavior near the discriminant locusD ⊂M where the fiber degenerates,

that is, some periods (ai, b
j) vanish. Physically this means that along the discriminant locus some

additional light degrees of freedom appear, so that the IR description in terms of the massless fields

parametrizing M becomes incomplete and breaks down.

The singular behavior is best understood in terms of properties of the period map τ . We see

the discriminant D as an effective divisor D =
∑

i niSi, where Si are the irreducible components

and M ] = M \ SuppD. The behavior of the period map as we approach a generic point s of

an irreducible component Si is described by three fundamental results: the strong monodromy

Theorem [55,137,138], the SL2-orbit Theorem [220], and the invariant cycle Theorem [220].

In a neighborhood U of s ∈ Si, we may find complex coordinates z1, · · · , zk so that, locally in

U , Si is given by z1 = 0. Then we have U ∩M ] ∼= ∆∗ × ∆k−1 where ∆ (resp. ∆∗) stands for

the unit disk (resp. the punctured unit disk). We write p for the period map τ restricted to

∆∗ × (z2, · · · , zk) ⊂ ∆∗ ×∆k−1, and h for the upper half-plane seen as the universal cover of ∆∗

via the map τ 7→ q(τ) ≡ e2πiτ . We have the commutative diagram

h

q

��

p̃
// Sp(2k,R)/U(k)

can

��

∆∗
p
// Sp(2k,Z)\Sp(2k,R)/U(k)

(5.28)

where p̃ is the lift of the (restricted) period map. Let γ be the generator of π1(∆∗ × ∆k−1) ∼= Z
and m ≡ m(γ) the corresponding monodromy element (cfr. S3). Then

p̃(τ + 1) = m · p̃(τ). (5.29)

Let d(·, ·) be the distance function defined by the standard invariant metric on the symmetric

space Sp(2k,R)/U(k) and dP (·, ·) the distance with respect to the usual Poincaré metric in h; the

inequalities on the curvatures together with the Schwarz lemma imply

Proposition 5.1.3 (Strong monodromy theorem [55,137,138]). The lifted period map p̃ is distance-

decreasing

d(p̃(x), p̃(y)) ≤ dP (x, y). (5.30)

Then the monodromy m is quasi-unipotent, i.e. there are minimal integers r ≥ 1, 0 ≤ s ≤ k such

that

(mr − 1)s+1 = 0. (5.31)

Equivalently (by Kronecker theorem) m has spectral radius 1 (Mahler measure 1).

All eigenvalues of m are r-th roots of unit. Since m ∈ Sp(2k,Z), its minimal polynomial M(z)
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is a product of cyclotomic polynomials Φd(z)

M(z) =
∏
d|r

Φd(z)
sd , sd ∈ N. (5.32)

The monodromy m is semi-simple iff s = 0, that is, if sd ∈ {0, 1} for all d. We say that m is regular

iff all its eigenvalues are distinct, i.e. iff sd ∈ {0, 1} and
∑

d|r sd = 2k.

The case of m semi-simple. Semi-simplicity of m has the following consequence:

Proposition 5.1.4 ([55, 137, 138]). The period map p : ∆∗ → Sp(2k,Z)\Sp(2k,R)/U(k) may be

extended holomorphically to the origin if and only if s = 0.

In other words, along an irreducible component Si of D whose monodromy element m is semi-

simple the period matrix τ ij is defined and regular even if the Abelian fiber itself degenerates. The

Kähler metric d2s = 2 Im τ ij da
i ⊗ dāj is singular along Si since the periods ai are not valid local

coordinates at this locus. The singularity is of the mildest possible kind: just a cyclic orbifold

singularity. We illustrate the situation along a semi-simple component Si of the discriminant D in

a typical example.

Example 2 (Non-Lagrangian k = 1 SCFT35). In these k = 1 models, the period of the elliptic

fiber τ is frozen in an orbifold (elliptic) point of the modular fundamental domain h/SL(2,Z), i.e.

either τ = e2πi/3 or τ = i depending on the model. Thus the Kähler metric is flat and M is locally

isometric to R2

ds2 = 2 Im τ da dā
local isometry−−−−−−−−−−→ dr2 + r2 dθ2, r2 = 2 Im τ |a|2. (5.33)

The coordinate r is globally defined, since r2 is the momentum map of the U(1) action given by

R-symmetry. On the other hand, the period of the canonically conjugate angle θ needs not to be

2π (which corresponds to the free SCFT). The period of the angle θ is related to the Coulomb

dimension ∆ by the identification θ ∼ θ + 2π/∆. Hence, if the theory is not free, ∆ 6= 1, at the

tip of the cone we have a cyclic orbifold singularity. We note that the unitary bound ∆ ≥ 1 (with

equality iff the SCFT is free) becomes (period of θ) ≤ 2π. Thus unitarity requires the curvature at

the tip to be non-negative and we may smooth out the geometry by cutting away the region r ≤ ε
and gluing back a positively curved disk. This is consistent with our discussion of the curvature in

special geometry in §.5.1.4. This example shows that the curvature inequalities apply also to the

δ-function curvature concentrated at orbifold points and their relation to physical unitarity.

We state this as a

Physical principle. The unitarity bounds guarantee that the δ-function curvatures associated to

the angular deficits at orbifold points are consistent with the positivity of curvatures required by

special Kähler geometry.

We quote another useful result:

35 This is a special case of Example 1.
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Proposition 5.1.5 ([55]). Suppose that the period map τ factors trough a quasi-projective variety

K
M

  

τ // Sp(2k,Z)\Sp(2k,R)/U(k)

K
p

==

(5.34)

and that the discriminant of p is a snc36 divisor with semi-simple monodromies. If p is not

the constant map, p is proper. Its image is a closed analytic subvariety containing p(K]) as the

complement of an analytic set.

m non semi-simple. We now turn to the case in which the monodromy m is not semi-simple.

Again we consider the neighborhood U ∼= ∆∗ ×∆k−1 considered around eqn.(10.51) and pull-back

all structures to its universal cover Uuni
∼= h×∆k−1. By the strong monodromy theorem there exist

minimal integers r ≥ 1, s ≥ 0 such that (mr − 1)s+1 = 0. In the non semi-simple case s ≥ 1. Then,

p̃(τ + r) = (1 + T ) · p̃(τ) with T = mr − 1 and T s+1 = 0, (5.35)

so that N ≡ log(1 + T ) =
s∑

n=1

(−1)n−1

n
Tn is well defined. (5.36)

N s 6= 0 and N s+1 = 0. The nilpotent operator N defines the weight filtration of a mixed Hodge

structure in the sense of Deligne [87] to which we shall return momentarily; more elementarily, by

the Jacobson-Morozov theorem [153, 195, 197] the rational matrix N defines a polynomial homo-

morphism φ : SL(2,Q)→ Sp(2k,Q) such that N is the image of the raising operator of the sl(2,Q)

Lie algebra. φ induces a period map p̊ : h → Sp(2k,R)/U(k) which is the simplest solution to the

functional equation (5.35):

p̊(τ) = eτN/r · p0 p0 globally defined in Ur, (5.37)

where σ : Ur → U is the local r-fold cover

σ : Ur ≡ h/(τ ∼ τ + r)×∆k−1 −→ h/(τ ∼ τ + 1)×∆k−1 ∼= U. (5.38)

The SL2-orbit theorem [220] states that the actual period map p differs from the Lie-theoretic map

p̊(τ) by exponentially small terms O(q1/r) as τ → i∞ (q ≡ e2πiτ ). A physicists studying the cor-

responding (2,2) supersymmetric σ-model states the theorem saying that p̊(τ) is the perturbative

solution, valid asymptotically as the coupling 4π/Im τ → 0, and this perturbative solution receives

corrections only by instantons which are suppressed by the exponentially small (fractional) instan-

ton counting parameter q1/r. To physicists working in 4d N = 2 QFT , the SL2-orbit theorem is

familiar as a fundamental result by Seiberg [225].

Let 0 6= x ∈ Ur; φ decomposes Γx ⊗ Q into irreducible representations of SL2(Q); the highest

weight Q-cycles ψ are defined by the condition Nψ = 0; all other Q-cycles are obtained from these

ones by acting on them with the SL2 lowering operator. Since τ is the period map of a degenerating

weight 1 Hodge structure, it follows from the Deligne weight filtration (or by the Clemens-Schmid

36 snc = simple normal crossing.
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sequence, see Corollary 2 in [196]), that only spin 0 and spin 1/2 representations are presents,

that is, N2 = 0. More precisely, we have a weight filtration of Q-spaces

W0 ⊂W1 ⊂W2 ≡ Γx ⊗Q, W0 = imN, W1 = kerN, (5.39)

such that N : W2/W1 → W0 is an isomorphism, and the polarization 〈−,−〉 induces a perfect

pairing between W2/W1 and W0 as well as of W1/W0 with itself [220] (of course, these statements

are just the usual selection rules for angular momentum).

We pull-back the local family of Abelian varieties X|U to the r-fold cover Ur; we get the family

π : σ∗X|U → Ur. By construction, the monodromy of the pulled back family is mσ ≡ mr = eN ,

so the monodromy invariant Q-cycles are precisely the ones in W1. The invariant cycle theorem

guarantees that all 1-cycle γx ∈ Γx invariant under the monodromy there is a homologous 1-cycle γ̂

in σ∗X|U in the total space of the (local) family and all 1-cycles in the total space are of this form.

Then W2/W1 consists of vanishing cycles, so that the corresponding periods vanish as q1/r → 0 i.e.

avan ∝ q1/r and then eqn.(15.3.3) says that the periods along the “spin-0” cycles W1/W0 are regular

as q → 0 while the ones in W0 (which are dual to the vanishing ones under the Dirac pairing) go as

aDvan ∝ avan log avan. (5.40)

The conclusion we got is totally trivial from the physical side. The special geometry along the

Coulomb branch is the IR description obtained integrating out the massive degrees of freedom; the

singularities arise because at certain loci in M some additional degree of freedom becomes massless.

One gets the leading singularity by computing the correction to the low energy coupling by loops

of light fields, see the discussion in §. 5.4 of the original paper by Seiberg and Witten [224]. The

mixed Hodge variation formula (5.40) is just their eqn.(5.10).

Thus, a part for the need to go to the local r-fold cover Ur, at a generic point of an irreducible

component Si of the discriminant D we do not get singularities worse than physically expected.

The singularity in eqn.(5.40) is mild:

R1 the squared-norm of the SW differential

Φ(q)
def
= i

(∫
Ai
λ

∫
Bi

λ̄−
∫
Ai
λ̄

∫
Bi

λ

)
=

= const. |q|2/r(− log |q|) + regular as q → 0,

(5.41)

while not smooth along the discriminant, extends continuously to D;

R2 Its differential dΦ, while singular in U , becomes continuous (non-smooth) when pulled back

to the local r-fold cover Ur;

R3 the points on the discriminant, q = 0, are at a finite distance from smooth points. Indeed, on

the local cover Ur the metric is modeled on ds2 = (− log |q|)|dq1/r|2 which is length decreasing

with respect the flat metric |dz|2, z = (− log |q|)1/2q1r. On U the metric is asymptotically

conical. In particular, M remain complete as a metric space;

R4 the integral of the Ricci curvature on the r-fold covering disk |q1/r| < ε vanishes as ε → 0,

i.e. there is no δ-like curvature concentrated on the discriminant, except for the obvious Zr-
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orbifold singularity implied by the covering quotient Ur → Ur/Zr ≡ U . Thus all arguments

based on curvature bounds work as in the semi-simple case. We have already remarked that

orbifold singularities do not spoil the curvature bounds (cfr. Physical principle).

All the above statements hold at all points of the discriminant (and not just at generic points

along a smooth component) when D is a snc divisor [220]. While this is generically the situation,

the special geometry describing a particular SCFT with the mass deformations switched off may

well be non generic. If the SCFT admits “enough” mass/relevant deformations, we can make D
to be snc by an arbitrarily small perturbation which cannot change the qualitative aspects of

the physics. Even in SCFTs without (enough) deformations, it is very likely that — while the

singularities may be more severe than the snc ones — the four regularity conditions R1-R4 still

hold. Indeed, R3 has been advocated by Gukov, Vafa and Witten as a necessary condition for a

sound SCFT [141]. In the rest of the thesis we shall make the

Mild assumption. Our special geometry satisfies R1-R4.

Remark 5.1.5. We may look at the singularities also from the point of view of the hyperKähler

geometry of the total space X. Since hyperKähler manifolds are in particular Calabi-Yau, the

discussions of refs. [141,241] directly apply with similar conclusions. Note that the statements hold

also for hyperKähler orbifolds.

5.2 Some facts about complex orbifolds

In the last subsection we found that the analytic space M typically has cyclic orbifold singularities.

Here we collect some well known facts about complex orbifolds that we shall need below.

Proposition 5.2.1 (See e.g. [43]). The locally ringed space (Z,OZ) associated to a complex orbifold

has the following properties:

i) (Z,OZ) is a reduced normal analytic space;

ii) the singular locus Σ(Z) is a closed reduced complex subspace of Z and has complex codimension

at least 2 in Z;

iii) the smooth locus Zreg is a complex manifold and a dense open subset of Z;

iv) Z is Q-factorial.37

In particular, under our mild assumption, the Coulomb branch M is a Q-factorial reduced

normal analytic space.

We stress that the singular set in the orbifold sense of Z, S(Z), may be actually larger than

the singular locus of the underlying analytic space, Σ(Z), see the discussion in ref. [43]. The case

of maximal discrepancy between the two sets is given by the following:

Proposition 5.2.2. Let G be a Shephard-Todd group (≡ a finite complex reflexion group [82, 83,

232]). Then the analytic space underlying the orbifold Cn/G is smooth, in fact isomorphic to An.

We shall also need the orbifold version of the Kodaira embedding theorem:

Theorem 4 (Kodaira-Baily [29]). Let Z be a compact complex orbifold and suppose Z has a positive

orbi-bundle L. Then Z is a projective algebraic variety.
37 An analytic space is Q-factorial if all Weil divisor has a multiple which is a Cartier divisor.
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5.3 Structures on cones

We review the geometry of metric cones in a language suited for our purposes.

5.3.1 Riemannian cones

A metric (Riemannian) cone over the (connected, Riemannian) base B is the warped product

R>0 ×r2 B ≡ C(B), (5.42)

that is, C(B) is the product space R>0 ×B equipped with the metric

ds2 = dr2 + r2 γab(y) dyadyb (5.43)

where ds2
y = γab(y) dyadyb is a metric on B (ya being local coordinates in B). We shall write C(B)

for the singular space obtained by adding the tip of the cone r = 0 to γ(B), endowed with the

obvious topology. Note that the radial coordinate r is a globally defined continuous real function

on C(B) taking all non-negative values. A cone C(B) possesses the following canonical (global)

structures: the plurisubharmonic function r2 and the concurrent vector field E = r∂r (Euler field)

which satisfy the following properties

£Er
2 = 2r2, £Eg = 2g, E(dr2) = 2r2, 2Ei = ∇ir2. (5.44)

that is

∇i∇jr2 = ∇iEj +∇jEi = 2gij . (5.45)

Proposition 5.3.1 ([250]). Conversely, if the Riemannian manifold (C, g) has a vector field E

whose dual form is closed and £Eg = 2g, there exist coordinates such that the metric takes the

conical form (5.43).

Corollary 5.3.1. Let C1, C2 be metric cones. Then C1 × C2 is a metric cone with Euler vector

E1 + E2.

Definition 3. By a good cone we mean a cone C(B) = R>0 ×r2 B with B smooth and complete.

For a good cone, the only possibly singular point is the tip of the cone r = 0. Note that a non-trivial

product of metric cones is never good unless one of the factors is Rk with the flat metric.

Remark 5.3.1. On a smooth Riemannian manifold the two notions of geodesic completeness and

metric-space completeness coincide (Hopf-Rinow theorem [37]). This is not longer true in presence

of singularities. Example 2 illustrates the point: the Minahan-Nemeshanski geometry is complete

in the metric space sense, but certainly not in the geodesic one. The singular Riemannian spaces

which are “physically acceptable” better be complete as metric space. This is part of regularity

assumption R3.

For later use, we give the well-known formulae relating the curvatures of C(B) and its base B.

We write Rijkl (resp. Rij) for the Riemann (Ricci) tensor of C(B) and Babcd (resp. Bab) for the

Riemann (Ricci) tensor of B.
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Lemma 5.3.1. One has

Rabcr = Rarbr = 0 (5.46)

Rabc
d = Babc

d − γac δdb + γbc δ
d
a (5.47)

Rab = Bab − (dimB − 1)γab. (5.48)

5.3.2 Singular Kähler cones: the Stein property

Now suppose the Riemannian manifold M is both Kähler (with complex structure I) and a (metric)

cone, M ∼= C(B). Eqn.(5.45) implies that Φ = r2 is a globally defined Kähler potential assuming

all values 0 ≤ Φ <∞.

In the applications to N = 2 SCFT we have in mind, the Kähler metric on the cone M is

singular even away from the tip r = 0. We specify the class of geometries we are interested in.

Definition 4. By a singular Kähler cone M we mean the following: 1) M is an analytic space

(which we may assume to be normal38) with an open everywhere dense smooth complex submanifold

M ] = M \D. 2) On M ] there is a smooth conical Kähler metric (in particular, M ] is preserved by

the C× action generated by the holomorphic Euler vector E , see eqn.(5.52)). 3) The global Kähler

potential Φ ≡ r2 on M ] extends as a continuous function to all M (cfr. regularity condition R1).

Then the Kähler form i∂∂r2 extends to M as a positive (1,1) current. The continuous function r2

is then plurisubharmonic in the sense of ref. [182].

Proposition 5.3.2. A singular Kähler cone with a compact base B is a Stein analytic space.

Indeed, r2 is a continuous plurisubharmonic function which is an exhaustion for M . The

statement is then the Narasimhan singular version of Oka theorem (see e.g. page 48 of [182]).

Then the singular cone M is Stein and Cartan’s Theorem A and Theorem B apply [119,

135,139]. Below we shall exploit this fact in several ways.

In the physical applications we have in mind, the Fréchet ring [201] of global holomorphic

functions, R = Γ(M,OM ), is the Coulomb branch chiral ring, our main object of interest. M

being Stein implies that R contains “many” functions: around all points of M we may find local

coordinate systems given by global holomorphic functions, and R separates points, i.e. given two

distinct points we may find a global holomorphic function which takes on these two points any two

pre-assigned complex values. Affine varieties over C are in particular Stein [119]. The converse is

not true in general, but it holds under some mild additional conditions [254]. We shall see that

that the M ’s which are Coulomb branches of N = 2 SCFTs are always affine.

5.3.3 Kähler cones: local geometry at smooth points, Sasaki manifolds

Specializing the results of §.5.3.1, in the (open everywhere dense) smooth locus M ] we have39

gij̄ = ∂i∂j̄Φ, ∇i∂jΦ = 0, Φ = r2. (5.49)

38 An analytic space (M,OM ) is normal iff the stalks of its structure sheaf OM are integrally closed, i.e. valuation
rings. If M is not normal, replace it with its normalization.

39 Factor 2 mismatches arise from different conventions in the real vs. complex case.
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In particular, the real vector R = IE, or in components

Ri = igij̄∂j̄Φ, Rī = −igīj∂jΦ, (5.50)

is a Killing vector. The physical interpretation of this geometric result is as follows: a Kählerian

cone may be used as a target space of a (classical) 3d supersymmetric σ-model. The fact that

it is Kähler means the model is N = 2 supersymmetric, while the fact that it is a cone means

that is classically conformally invariant [36]; the two statements together imply that the model

has classically N = 2 superconformal symmetry hence a U(1)R R-symmetry which is part of the

algebra. The action of U(1)R on the scalars is given by a (holomorphic) Killing vector which is R.

We note that

[E,R] = 0, R(dr2) = 0 (5.51)

so that R = Ra(y)∂ya is in facts a Killing vector for the metric ds2
y on the base B whose norm is

1, i.e. RaRa = 1. For a holomorphic function h on a conic Kähler manifold the actions of E and R

(in physical language: their dimension and R-charge) are related by

£Rh = i£Eh ⇐⇒ £Ēh = 0, where E = (E − iR)/2, (5.52)

which physically says that these two quantum numbers should be equal for a chiral superconformal

operator. We refer to E as the holomorphic Euler vector.

Remark 5.3.2. By definition, a cone R>0×r2B is Kählerian if and only if its base B is Sasaki [43].

The base B is in particular a K-contact manifold whose Reeb vector is R.

5.3.4 Geometric “F -maximization”

We pause a second to digress on a different topic, namely F -maximization in 3d [154]. A problem

one encounters in studying SCFT is the exact determination of the R-charge which enters in the

superconformal algebra. For (classical) σ-models with conic Kähler target spaces [36], this is the

problem of identifying the Reeb Killing vector R between the family of Killing vectors with the

appropriate action on the supercharges £VQ = ±1
2Q. The general such Killing vector has the form

V = R+ F with F a ‘flavor’ Killing symmetry. One has the following:

Claim. Let M be a Kähler cone and V a Killing vector on M which acts on supercharges as

£VQ = ±1
2Q. Then (point-wise)

‖V ‖2 ≥ Φ ≡ r2, (5.53)

with equality iff V is the Reeb vector R. That is, the true superconformal R-charge extremizes the

square-norm.

Remark 5.3.3. The reader may easily check that this purely geometric fact is really F -maximization

for the partition function on S3 of the corresponding 3d σ-model in the classical limit ~ → 0. By

considering the low-energy effective theory on the moduli space of susy vacua of a (quantum) 3d

N = 2 SCFT, one reduces the general case to this statement.
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5.3.5 Quasi-regular Sasaki manifolds

In the physical applications we are mainly interested in Kähler cones with quasi-regular Sasaki

bases B, that is, with compact Reeb vector orbits, so that R generates a (locally free) compact

group of isometries U(1)R which we identify with the R-symmetry group which must be compact

on physical grounds. B is regular if in addition, the U(1)R isometries act freely. We collect here

some useful results.

Proposition 5.3.3 (see e.g. [43]). B is a quasi-regular Sasakian manifold. Then

i) The Reeb leaves are geodesic;

ii) B is a principal U(1) orbi-bundle B → K;

iv) the base K is Kähler orbifold;

v) If the flow is regular K is a Kähler manifold and B a principal S1-bundle.

Indeed, K is just the symplectic quotient of M with respect to the Hamiltonian U(1)R flow, r2

being its momentum map, as eqn.(5.50) shows.

5.4 Conical special geometries

We may introduce distinct notions of “conical special geometry”. The weakest one corresponds

to a holomorphic integrable system X → M whose Kählerian base M (with Kähler form (5.18))

happens to be a metric cone. A slightly stronger notion requires M to be a cone and the full set

of geometric structures S1-S11 to be equivariant with respect to the Euler action £E (or £E).

An even stronger notion requires in addition that the base of B of M is a quasi-regular Sasaki

manifold.40 By a conical special geometry (CSG) we shall mean the strongest notion together with

the regularity conditions R1-R4.

5.4.1 Weak special cones

Locally in the good locus M ] ⊂M we may write the special structure in terms of special complex

coordinates and holomorphic prepotential F(a). By the assumption of the existence of a SW

differential, we know that there is a globally defined Kähler potential

Φ = i
(
aib̄i − āibi

)
. (5.54)

If M is also a cone, so r2 is also a globally defined Kähler potential, and

r2 = Φ + ih− ih̄ (5.55)

for some local holomorphic function h with global real part. The metric is conic iff the vector dual

to the (0, 1) form ∂̄(iΦ + h̄) is holomorphic. Locally this happens if there are constants (ci, dj) such

40 We do not know if the special cones in the slightly stronger sense are automatically special cones in the strongest
sense.
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that

bi + di = τij(a)
(
aj + cj) and r2 = i(ai + ci)(b̄i + d̄i)− i(āi + c̄i)(bi + di). (5.56)

The slighter stronger notion of special cone corresponds to the case (ci, dj) = 0 (so r2 ≡ Φ); in other

words, to get a slightly stronger special cone out of a weak one we simply absorb the constants in

the definition of the periods ai, bi by a shift δλ = ci dxi + di dy
i of the SW differential. Then

£E

b
a

 =

b
a

 , (5.57)

which means that locally we can find a prepotential F(a) which is homogeneous of degree 2 in the

special coordinates ai. Indeed, in the slightly strong conic case, from eqn.(5.57) the Euler (Reeb)

vector have the local expression

E = ai∂ai + āi∂āi , £EF = 2F , (5.58)

R = iai∂ai − iāi∂āi , £RF = 2iF . (5.59)

The vector E agrees in the overlaps between two special coordinate patches if the condition £EF =

2F holds in one of the two patches (and then also in the other, up to a constant). Indeed, the

second eqn.(5.58) implies

bi = τij(a) aj . (5.60)

Now, on the overlap b′
a′

 =

A B

C D

a
b

 , (5.61)

so that

a′ i =
(
Cikτkj +Di

j

)
aj ,

∂a′ i

∂aj
= Cikτkj +Di

j , (5.62)

then

E ′ = a′ i ∂a′ i = ai ∂ai = E , (5.63)

and the holomorphic Euler vector E is globally defined. The fact that the periods a are (locally

defined) holomorphic functions, fixes their transformation under the Killing-Reeb vector R

Ra = ia, Rb = ib. (5.64)

Let Φ be the global Kähler potential (5.54).

Lemma 5.4.1. For a (slightly strong) special cone M we have:

1) The function Φ in eqn.(5.54) is the squared-norm of the Euler (and Reeb) vector

r2 = Φ = ‖E‖2 = ‖R‖2; (5.65)
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2) the conic relations (5.44) take the form

∂ı̄Φ = gı̄j E
j . (5.66)

Remark 5.4.1. Eqn.(5.66) together with R2 imply that the real (complex) analytic vector fields

E, R (resp. E , E) on M ] extend to continuous fields in M and their C×-action makes sense in M .

Remark 5.4.2. Let M be a special cone. Then the symplectic quotient K (cfr. Proposition

5.3.3) is a wrong sign projective special Kähler manifold [120]. By definition, projective special

Kähler manifolds are the geometries appearing in N = 2 supergravity (as contrasted to N = 2

gauge theory); “wrong sign” means that K corresponds to supergravity with an unphysical sign

for the Newton constant.

5.4.2 Properties of the Reeb flow/foliation: the Reeb period

As already anticipated, the special cones M which arise as Coulomb branches of N = 2 SCFTs

have the property that the flow of the Reeb vector field R yields a U(1)R action on M , i.e. the

Reeb leaves [43] are compact in M . This must be so because the exponential map41 t 7→ exp(2πtR)

should implement the superconformal U(1)R symmetry which is compact in a regular SCFT. The

action is automatically locally free, since the Reeb vector has constant norm 1 and hence does not

vanish anywhere.42 The statement that R generates a locally-free U(1)R action is equivalent to the

statement that its basis B is a quasi-regular Sasaki orbifold.

We now give our final definition:

Definition 5. By a conical special geometry (CSG) we mean a complex analytic integrable system

X → M with SW differential λ such that the base M (with the Kähler metric S10) is a singular

Kähler cone (satisfying R1-R4) such that the restriction to M ] of its Euler vector E satisfies

£Eλ− λ = d%, % meromorphic, (5.67)

while its base B is a quasi-regular Sasaki orbifold.

Note that this means (on M ])

λ = ai dxi + bi dy
i + d%′. (5.68)

Exponential action of the Reeb field R. Quasi-regularity requires the existence of a minimal

positive real number α > 0 such that the Reeb exponential map

exp(2παR) : M →M (5.69)

is the identity diffeomorphism. If the base B is compact, the map exp(2παtR) may have fixed

points in M \ {r = 0} only for a finite set of rational values 0 < t < 1.

41 By exp(2πtR) we always mean the finite isometry of M or B generated by the Reeb Killing field of parameter
2πt.

42 Of course, this geometric statement also follows from unitarity of the SCFT.
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Definition 6. The real number α > 0 is called the Reeb period of the CSG.

The Reeb period is a basic invariant for a 4d N = 2 SCFT.

Reeb period and Coulomb dimensions. The chiral ring R = Γ(M,OM ) of a CSG is (the

Fréchet closure of) a graded ring, the grading of a (homogeneous) global holomorphic function h

being given by its dimension ∆(h) ∈ R

£Eh = ∆(h)h. (5.70)

In the chiral ring of a unitary SCFT, except for the constant function 1 which has dimension zero,

all other dimensions ∆(h) should be strictly positive for h to be regular at the tip. The Reeb

exponential map then yields

exp(2πtR) · h = e2πit∆(h) h t ∈ R (5.71)

and the definition (5.69) implies

∆(h) ∈ 1

α
N, (5.72)

so R is graded by the semigroup N/α. We claim that α is a positive rational number ≤ 1 (so that

the dimensions of all chiral operators, but the identity, are rational numbers ≥ 1). Indeed, the map

e2παR acts on the periods as (ai, bj) 7→ e2πiα(ai, bj). From (5.69) we deduce that the initial and final

periods are equivalent up to the action of an element m of the monodromy group. Then e2πiα ≡ λ
is an eigenvalue of a monodromy, hence a root of unity. Therefore α ∈ Q>0 and α = log(λ)/2πi.

The requirement that the curvature at the tip of the cone is non-negative forces us to use the log

determination of the logarithm, see below eqn.(14.2).

The order r of 1/α in Q/Z coincides with the order of the quantum monodromy M which is

well-defined in virtue of the Kontsevitch-Soibelman wall-crossing formula, see discussion in [60,65].

5.4.3 Local geometry on K]

In a special cone, the discriminant locus is preserved by the C× action generated by the vector fields

E and R. Hence the singular locus on its base B is preserved by the R-flow, and so is its smooth

locus B]. By our definition, B] must be Sasaki quasi-regular. Then the Hamiltonian quotient yields

a Kähler orbifold (manifold if B] is regular) K] ≡ B]/U(1) of dimension (k−1) (cfr. Proposition

5.3.3). The Kähler potential of K] is

log Φ = log ‖R‖2 = log ‖λ‖2, (5.73)

where the SW differential λ is seen as a section of a holomorphic line sub-bundle L ⊂ V. The

period matrix τ ij(a) is homogeneous of degree zero, £Rτ ij(a) = 0 so the (restriction of the) period

map τ |M] factors trough K]. We write p : K] → Sp(2k,Z)\Hk for the period map so defined.

Lemma 5.4.2. The Ricci form on K] is

ρ = k ω + p∗Ω ≥ k ω, (5.74)
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where ω = i∂∂ log Φ is the Kähler form on K] and Ω the Kähler form of the Siegel upper half-space

Hk (compare Proposition 5.1.2).

5.4.4 Special cones with smooth bases

The bases B of the CSG interesting for the physical applications are seldom smooth (as Riemannian

spaces). However, we first consider the case of B a regular smooth Sasaki manifold and then discuss

what may change in our conclusion in presence of singularities.

Combing Lemma 5.3.1 and Proposition 5.1.2 we get the inequality

Bab ≥ 2(k − 1) γab. (5.75)

In view of Meyer theorem (Theorem 1) we conclude that for k ≡ dimCM > 1 the base B of the

cone is compact, π1(B) is finite, and the diameter of B is bounded

d(B) ≤ π/
√

2(k − 1). (5.76)

In other words: if M is a special cone of dimension k > 1 over a smooth base B,

M = M̃/G (5.77)

with M̃ a simply-connected Kähler cone with compact base of diameter ≤ π/
√

2(k − 1) and G is a

finite group acting freely.

Corollary 5.4.1. M a special Kähler cone over a smooth base B ⇒ M is Stein.

Indeed B is compact, and then Proposition 5.3.2 applies.

Proposition 5.4.1. Let X be a special cone whose Sasaki base B is smooth and regular. Then its

Hamiltonian reduction K (see Proposition 5.3.3) is a smooth, compact, and simply-connected

Kähler manifold.

Indeed, K is compact, smooth, and, being complex, oriented of even real dimension. Its sectional

curvatures are positive. Then the last statement follows from Synge theorem (Theorem 2). In

facts, since B is compact by Meyer theorem, Theorem 3 yields an even stronger statement:

Proposition 5.4.2. A smooth base B of a CSG is diffeomorphic to S2k−1/G for some freely acting

finite subgroup G ⊂ U(k).

5.4.5 Relation to Fano manifolds

Recall that a Fano manifold X is a smooth projective variety whose anticanonical line bundle −KX

is ample. We have:

Proposition 5.4.3. Under the assumptions of Proposition 5.4.1, the Kähler manifold K is a

Fano projective manifold.

Proof. K is smooth by assumption and compact by Meyers theorem. By Lemma 8.30 the Ricci

form is ≥ (dimK + 1)ω, ω being the (positive) Kähler form. Thus the anti-canonical is ample,

hence K is projective (by Kodaira embedding theorem [139]) and Fano.
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Proposition 5.4.4. Under the assumptions of Proposition 5.4.1 and k > 1:

i) the universal cover B̃ of the base manifold B is homeomorphic to S2k−1;

ii) the rank of the Picard group ( Picard number) of the Fano manifold K is 1:

%(K) ≡ rank Pic(K) = 1; (5.78)

iii) the Hodge diamond of K is hp,q(K) = δp,q.

Proof. B̃ is compact and simply connected by Meyers’ theorem. From Lemma 5.3.1 and eqn.(5.27)

we see that the eigenvalues of the curvature operators are bounded below by 1. Using Theorem

3 we get i). Then B ≡ B̃/π1(B) has real cohomology

Hq(B,R) =

{
R for q = 0, 2k − 1

0 otherwise.
(5.79)

Since B is Sasaki-regular, it is a principal U(1)-bundle over K

S1 // B

��

K

and K is simply-connected (Proposition 5.4.1). (5.80)

To this fibration we apply the Leray spectral sequence of de Rham cohomology.43 We get

Hq(K) =

{
R q = 0, 2, · · · , 2(k − 1)

0 otherwise.
(5.81)

This shows iii). To get ii) note that the exponential exact sequence yields the implication

H1(K) = 0 =⇒ Pic(K) ∼= H2(K,Z), (5.82)

and then ii) follows from iii).

We have a much stronger statement:

Proposition 5.4.5. Under the assumptions of Proposition 5.4.1, the Fano manifold K ∼= Pk−1

and the period map p is constant.

Before proving this Proposition we define the index ι(F ) of a Fano manifold F whose canonical

divisor we write KF . The index ι(F ) is the largest positive integer such that −KF /ι(F ) is a (ample)

divisor [150]. Under the assumptions of Proposition 5.4.1 we have a line bundle L → K such

that ω is its Chern class (up to normalization). Thus from Lemma 8.30 we get:

Lemma 5.4.3. Under the assumptions of Proposition 5.4.1 we have ι(K) ≥ dimK + 1 with

equality iff the period map τ is constant.

43 The computation is world-for-world identical to Example 14.22 in [41].
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Proof. The Picard number of K is 1, and we have

[p∗Ω] = δ[ω] for some δ ∈ Q, with δ ≥ 0, and = only if p is constant, (5.83)

so

ι(K) = dimK + 1 + δ ≥ dimK + 1 (5.84)

with equality iff p =constant.

Then Proposition 5.4.5 follows from this Lemma and a basic fact from the theory of Fano

varieties: the index of a Fano manifold F cannot exceed dimF + 1, and if ι(F ) = dimF + 1 then

F ∼= PdimF [150].

Corollary 5.4.2. Suppose we have a special cone of dimension k > 1. If its base B is a smooth,

complete, regular Sasaki manifold, the period map τ is constant and M = Ck with the a Kähler

metric. That is: if the geometry is regular except for the singularity at the vertex of the cone, then

the SCFT is free, as expected.

Remark 5.4.3. The result does not hold for k = 1. All k = 1 Minahan-Nemeshanski geometries

satisfy the other assumptions, yet the SCFT is not free. The essential point is that for k > 1

the assumptions imply regularity in codimension 1, whereas the tip of the cone is automatically a

codimension 1 singularity for k = 1.

Remark 5.4.4. The last result also follows from rigidity. If K is smooth and compact, the

monodromy group is trivial, hence (by uniqueness) the period map should be the constant one.

5.4.6 Properties of non-smooth CSG

In the previous sub-section we considered the case in which the geometry of the special cone is

totally regular away from its vertex. We got only the (known) k = 1 geometries and free theories

for k > 1. In all other cases there are singularities in M \ {0} of the kind consistent with R1-R4.

Since B] is only quasi-regular, we have a locus N ⊂ B] on which U(1)R does not act freely. We

write B̊ = B] \ N . For k > 1, K̊ = B̊/U(1) is a open dense Kähler sub-manifold of the singular

space K, in facts K̊ = K \ D, for some divisor D. Since the period matrix τ ij is homogeneous

of degree zero, the period map τ factors through K. We consider its restriction to the regular

subspace, τ : K̊ → Sp(2k,Z)\Hk. All the considerations in §. 5.1.5 apply to this map; in particular,

we have a monodromy representation m̊ : π1(K̊)→ Sp(2k,Z). Along an irreducible component Di

of D such that the monodromy is semi-simple, we may extend τ holomorphically and K has along

Di only a Zr cyclic orbifold singularity: indeed, the geometry becomes smooth after the local base

change U → Ur, cfr. §. 5.1.5. Otherwise, the monodromy along Di satisfies (mr − 1)2 = 0; the base

change U → Ur sets the local geometry in the form discussed around eqn.(5.40). Locally Ur has

the form ∆∗ ×∆k−2 and we may choose local coordinates so that the Kähler form take the form

(here |q| < 1)

i∂∂ log Φ ≈ i∂∂ log

(
|q|2
(
1− log |q|

)
+
k−1∑
i=2

|xi|2
)
. (5.85)
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We may modify this metric to

i∂∂ log

(
|q|2
(

1− log |q| · fC(− log |q/ε|2)
)

+
k−1∑
i=2

|xi|2
)

(5.86)

where fC(x) : R→ R is a smooth function which equals 1 for x ≤ 0 and has all derivatives vanishing

as x → +∞. The new Kähler form (5.86) is smooth in Ur and agrees with the original one for

|q| ≥ ε; one checks that one may choose the local deformation so that the metric and the curvatures

remain positive. Of course, it is no longer a special Kähler metric. The point we wish to argue

is that K admits a non-special orbifold Kähler metric, with only Zr orbifold singularities, whose

Ricci form satisfies a bound of the form Ri̄ ≥ kgi̄. The same conclusion applies to M (the Ricci

tensor being non-negative in this case); then the basis B is also regular except for cyclic orbifolds

singularities. We may apply to B the orbifold version of Meyers [40, 252]): a metrically complete

Riemannian orbifold X, whose Ricci curvature satisfies R ≥ λ2g, is compact with a diameter

d(X) ≤ π/λ. Once we are assured that B, albeit singular, is compact we conclude that M is Stein.

Moreover, from the Synge theorem for orbifolds [252], we see that K, albeit no smooth, is still

compact and simply-connected.

L is now a line orbi-bundle which is still positive by eqn.(5.74), Kodaira-Baily embedding

theorem (Theorem 4) guarantees that K is a normal projective algebraic variety with at most

cyclic orbifold singularities. The anticanonical divisor −KK is now a Weyl divisor which is ample

as a Q-Cartier divisor. A normal projective variety with ample anti-canonical Q-divisor having

only cyclic singularities is a log-Fano variety, to be defined momentarily. The Picard number % is

1 as in the smooth case. Indeed, B is still diffeomorphic to a generalized Lens space S2k−1/G (see

Proposition 5.4.2) and the finite group G centralizes the Reeb U(1) action, so that the orbifold

K is homeomorphic to a finite quotient of Pk−1, and hence rankH2(K,Z) = 1. The index ι(F ) of

a log-Fano variety F is the greatest positive rational such that −KF = ι(F )H for some Cartier

divisor H (called the fundamental divisor). By a theorem of Shokurov [150], the index of a log-Fano

F is at most dimF + 1. This is not necessarily in contradiction with eqn.(5.74) since now L is just

a Q-divisor. Let σ be the smaller positive rational number so that Lσ is a bona fide line bundle.

Then

ι(K) =
dimK + 1 + δ

σ
≥ dimK + 1

σ
. (5.87)

The theorem of Shokurov then yields 1 ≤ σ with equality if and only if our special cone M is Ck

with the flat metric, i.e. we are talking about the free SCFT. Shokurov inequality is one of the many

geometrical properties underlying the physical fact that saturating the unitarity bound means to

be free. We see that the main difference between the smooth case of the previous subsection and

the general is that in the second case G acts properly discontinuously on S2k−1 but not freely. The

previous argument giving % = rank Pic(K) = 1 extends to this (slightly) more general case (indeed,

K is simply-connected and topologically a finite quotient of Pk−1).

5.4.7 log-Fano varieties

A singular Fano variety whose only singularities are cyclic orbifold ones is a log-Fano variety. We

recall the relevant definitions [150]:
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Definition 7. 1) A Weil divisor D is called Q-Cartier if there exists m ∈ N such that mD is a

Cartier divisor. 2) A normal variety X is Q-factorial if all Weil divisors are Q-Cartier. (Note that

if X is normal, the canonical divisor KX is well-defined in the Weil sense44). 3) A normal variety

X is said to have terminal, canonical, log terminal, or log canonical singularities iff its canonical

divisor KX is Q-Cartier and there exists a projective birational morphism (whose exceptional locus

has normal crossing45) f : V → X from a smooth variety V such that:

KV = f∗KX +
∑
i

aiEi,

∣∣∣∣∣∣
where Ei are the prime exceptional divisors, i.e.the

irriducibile components of the exceptional locus of

f of codimension 1

(5.88)

and, respectively:
ai > 0 terminal, ai ≥ 0 canonical,

ai > −1 log-terminal, ai ≥ −1 log-canonical.
(5.89)

4) A normal projective variety X with only log-terminal singularities whose anti-canonical divisor

−KX is an ample Q-Cartier divisor is called a log-Fano variety. 5) The greatest rational ι(X) > 0

such that −KX = ι(X)H for some (ample) Cartier divisor H is called the index of X and H

is called a fundamental divisor. 6) The degree of a Fano variety X is the self-intersection index

d(X) = HdimX .

Comparing our discussion in §.5.4.6 with the above definitions, we conclude (cfr. Proposition

7.5.33 of [43]):

Corollary 5.4.3. The symplectic quotient K = M//U(1) of a CSG is a log-Fano variety with

Picard number one and Hodge diamond hp,q = δp,q. Moreover, in the smooth sense, K ∼= Pk−1/G

for some finite group G.

Thus a CSG M is a complex cone over a normal projective variety of a very restricted kind; in

particular, M is affine and a quasi-cone in the sense of §.3.1.4 of [100].

Example 3. A large class of examples of log-Fano varieties with the properties in the Corollary

is given by the weighted projective spaces (WPS) [100]. Il w = (w1, w2, · · · , wk) ∈ Nk is a system

of weights, P(w) is(
Ck \ {0}

)/
∼ where (z1, · · · , zk) ∼ (λw1z1, · · · , λwkzk) ∀ λ ∈ C×. (5.90)

All such spaces are log-Fano with just cyclic orbifold singularities, simply-connected, have Hodge

numbers hp,q = δp,q, and are isomorphic to Pk−1/G for some finite Abelian group G. More generally,

all quasi-smooth complete intersections in weigthed projective space of degree d <
∑

iwi and

dimension at least 3 are log-Fano, simply-connected, and have % = 1 [100] but typically their Hodge

numbers hp,q 6≡ δp,q. A slightly more general class of examples of projective varieties satisfying all

conditions above is given by the fake weighted projective spaces [48]. A fake WPS is canonically

the quotient of a WPS by a finite Abelian group. One shows that a log-Fano with Picard number

one which is also toric is automatically a fake WPS.
44 Indeed, X is non-singular in codimension 1, so a canonical divisor over the smooth open set Xsmooth ⊂ X can

be extended as a Weil divisor to X.
45 Such resolutions exists by Hironaka theorem [143].
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Example 4. Let G ⊂ PGL(k,C) be a finite subgroup; then Pk−1/G is a (Q-factorial) log-Fano

variety with % = 1 [150]. By §. 5.4.6, K is always diffeomorphic to such a variety.

6 The chiral ring R of a N = 2 SCFT

6.1 General considerations

In the previous section we reviewed the general properties of the CSG describing the Coulomb

branch M of a 4d N = 2 SCFT in which we have switched off all mass and relevant deformations

so that the conformal symmetry is only spontaneously broken by the non-zero expectation values

of some chiral operators 〈φi〉x 6= 0 in the susy vacuum x ∈ M . Although the Kähler metric on

M has singularities in codimension 1, due to additional degrees of freedom becoming massless

or symmetries getting restored, these singularities are assumed to be mild and the underlying

complex space M is regular46. The analysis of local special geometry on the open, everywhere

dense, regular set M ] = M \D only determines the special geometry up to “birational equivalence”

since the singular fibers over the discriminant locus D may be resolved in different ways; different

consistent resolutions give non-isomorphic CSG which correspond to distinct physical models. For

instance, SU(2) SQCD with Nf = 4 and SU(2) N = 2∗ have “birational equivalent” CGS whose

total fiber spaces X are certainly different in codimension 1; other examples of such “birational”

pairs in rank one are given by Minahan-Nemeshansky Er SCFTs and Argyres-Wittig models [25]

with the same Coulomb branch dimension but smaller flavor groups. The basic invariant of an

equivalence class of SCFTs is the chiral ring R = Γ(M,OM ).

The common lore is that R is (the Fréchet completion of) a free graded polynomial ring R =

C[u1, · · · , uk] whose grading is given by the action of the holomorphic Euler field, £Eui = ∆iui. The

set of rational number {∆1, · · · ,∆k} are the Coulomb dimensions. This lore may be equivalently

stated by saying that the Hamiltonian reduction K = M//U(1)R is (birational to) the weighted

projective space (WPS) P(∆1, · · · ,∆k). In the previous section we deduced from special geometry

several detailed properties of M and K which are consistent with this idea: M is affine while K is a

normal projective log-Fano variety, which is simply-connected and has Hodge numbers hp,q = δp,q.

These are quite restrictive requirements on an algebraic variety, and they hold automatically for all

WPS; indeed they almost characterize such spaces. For instance, if one could argue that K (or M)

is a toric variety then these properties would imply that K is a fake WPS [48], and in particular a

finite Abelian quotient of a WPS.

We sketch some further arguments providing additional evidence that K is (birational to) a finite

quotient of a WPS (possibly non-Abelian). The monodromy and SL2-orbit theorems describe the

asymptotical behavior of the special Kähler metric on M as we approach the discriminant D (at

least for D snc). As argued in §. 5.4.6, we can modify the metric to a Kähler metric which is smooth

in M \ {0}, agrees with the original one outside a tubular neighborhood of D of size ε, is conical

and Kähler with non-negative curvatures. Of course the new metric is no longer special Kähler and

cannot be written in terms of a holomorphic period map; nevertheless it is a nice regular metric

on the complex manifold M \ {0} with all the good properties. Working in the smooth category,

and using the sphere theorems (cfr. §.5.1.4), we conclude that the Riemannian base B of the cone

46 Regularity of the underlying analytic space M in codimension 1 already follows from the fact that we are free
to assume it to be normal.
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is diffeomorphic to a space form S2k−1/G for some finite G acting freely, hence to S2k−1 up to

a finite cover. The finite cover M ′ of M is a Riemannian cone over S2k−1 is diffeomorphic to

R2k ∼= Ck. Moreover we know that M ′ is Stein, in fact a normal affine variety. If we could say that

M ′, being an affine variety diffeomorphic to Ck is biholomorphically equivalent to Ck, we would

be done. Unfortunately, for k ≥ 3 there are several examples of exotic Ck, that is, affine algebraic

spaces which are diffeomorphic to Ck but not biholomorphic to Ck [253]. However, no example

is known of an affine variety over C which is diffeomorphic to Ck but not birational to Ck; the

conjecture which states that there are none being still open [253]. Hence, assuming the conjecture

to be true, we conclude that M ′ is birational to Ck. On the other hand, M ′ is not just a complex

space diffeomorphic to Ck, it has additional properties as (e.g.) a holomorphic Euler vector E
whose spectrum is an additive semigroup spec(E) ⊂ {0} ∪Q≥1, and the condition of non-negative

bisectional curvatures. Were not for the singularity at the tip of the cone, this last property by

itself would guarantee47 that M ′ is analytically isomorphic to Ck.
There is still the question of the relation between the Coulomb branch M and its finite cover

M ′. Since M ∼= M ′/G, the statement M = M ′ is equivalent to G = 1, that is (for k > 1) that

after smoothing the discriminant locus by local surgery M becomes simply-connected. This holds

in the sense that the monodromy along a cycle not associated to the discriminant is trivial (since

the period map factors through K).

All the above results and considerations, while short of a full mathematical proof, provide

convincing evidence for the general expectation that M is birational to Ck, so for the purposes

of our “birational classification” we may take M to be just Ck. C× acts on M through the

exponential action of the Euler field E . Again, an action of C× on Ck is guaranteed to be linear

only for k ≤ 3 [253]; in larger dimensions exotic actions do exist. However, in the present case

the action is linear in the smooth sense; under the assumption that the complex structure is the

standard one for Ck, we have a linear action, that is, the chiral ring has the form

R = C[u1, · · · , uk]. (6.1)

where the ui can be chosen to be eigenfunctions of £E , i.e. homogeneous of a certain degree ∆i.

Then K is the WPS P(∆i). Thus, under some mild regularity conditions and modulo the plausible

conjecture that a smooth affine variety M whose underlying C∞-manifold is diffeomorphic to Cn

is actually bimeromorphic to Cn, we conclude that the common lore is correct up to birational

equivalence (and, possibly, finite covers). For the rest of this thesis we shall assume this to be the

case without further discussion.

Remark 6.1.1. It is interesting to compare the above discussion with the one in ref. [15]. The

previous argument is based on the idea that the unitary bound ∆(u) > 1 implies that we may

smooth out the metric while preserving the curvature inequalities. In ref. [15] they find that if the

chiral ring is not free there must be a local parameter u with ∆(u) < 1, so if there exists such an

47 The following theorem (a special case of Yau’s conjecture [78,251]) holds:

Theorem (Chau-Tam [77]). N a complete non-compact Kähler manifold with non-negative and bounded bi-sectional
curvature and maximal volume growth. N is biholomorphic to Cn.

M with the modified metric satisfy non-negativity of bisectional curvatures and maximal volume growth, but the
curvatures (if non zero) blow up as r → 0, and geodesic completeness fails at the vertex.
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u the argument leading to (6.1) cannot be invoked. Clearly u should not be part of the physical

chiral ring Rph. However, in a Stein space the local parameter may always be chosen to be a global

holomorphic function, so u ∈ Γ(M,OM ), which is our definition of the “chiral ring”. Going through

the examples of ref. [15] one sees that their Coulomb branches are non-normal analytic spaces, that

is, they have the same underlying topological space Mtop by a different structure sheaf Oph 6= OM
whose stalks are not integrally closed. In this case the physical chiral ring Rph = Γ(M,Oph) may

be identified with a subring of the geometrical one R = Γ(M,OM ). (See also the third caveat in

§.5.1.1 and §.10.3.1 below).

To fully determine the graded rings R which may arise as Coulomb chiral rings of a CSG, it

remains to determine the allowed dimension k-tuples {∆1, . . . ,∆k}. We shall address this question

in section 10. Before going to that, we consider the simplest possible CSG just to increase the list

of explicit examples on which we may test the general ideas.

6.2 The simplest CSG: constant period maps

For k = 1 all CSG have constant period map τ = const. For k > 1 constant period maps are still a

possibility, although very special. For instance, this happens in a Lagrangian SCFT in the limit of

extreme weak coupling (classical limit). This is good enough to compute the Coulomb dimensions

∆i, since they are protected by a non-renormalization theorem (or just by the fact that they are

U(1)R characters and U(1)R is not anomalous).

The Kähler metric is locally flat, i.e. has the local form

ds2 = Im τ ij da
idāj . (6.2)

Then M = Ck/G where G ⊂ Fix(τ ) ⊂ Sp(2k,Z) is a subgroup of the isotropy group Fix(τ ) of τ .

Fix(τ ), being discrete and compact, is finite. Then

C[a1, · · · , ak]G ⊂ R. (6.3)

We stress that (in general) we have just an inclusion not an equality: in Example 2 the three

rank-1 Argyres-Douglas SCFT (respectively of types A2, A3 and D4) have

C[a]Zm+1 = C[um] ( C[u] ≡ R, (6.4)

with m = 5, 4, 2 respectively. Note, however, that we have still

K = ProjR ∼= ProjC[a]G (6.5)

in these cases. The point is that K does not fix uniquely the chiral ring, unless we specify its orbifold

structure, see the discussion in [216]. We shall study the orbifold behavior in more generality in

the next section. Here we limit ourselves to the very simplest case in which

R ∼= C[a1, · · · , ak]G (6.6)

as graded C-algebras. The Shephard-Todd-Chevalley theorem [82, 232] states that C[a1, · · · , ak]G
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is a graded polynomial ring if and only if G is a finite (complex) reflection group48. In such a case

the Coulomb branch dimensions ∆i coincide with the degrees of the fundamental invariants ui of

the group G such that C[a1, · · · , ak]G = C[u1, · · · , uk]. However, not all finite reflection groups can

appear in special geometry, since only subgroups of the Siegel modular group, G ⊂ Sp(2k,Z), are

consistent with Dirac quantization.49 In §.10.2 we review the well known:

Fact. Let G ⊂ Sp(2k,Z) be a finite subgroup of the Siegel modular group. The subset Fix(G) ⊂ Hk
of points in the Siegel upper half-space fixed by G is a non empty, connected complex submanifold.

Thus, if G is a finite reflection subgroup of Sp(2k,Z) there is at least one period τ with τ ⊂
Fix(G) and the quotient by G of Ck with the flat metric (6.2) makes sense (as a orbifold). All such

metrics are obtained by continuous deformations of a reference one, and so they belong to a unique

deformation-type. The dimension of the fixed locus, d = dimC Fix(G), is given by eqn.(10.40).

The finite complex reflection groups (and their invariants ui) have been fully classified by

Shephard-Todd [130,181,232]. They are direct products of irreducible finite reflection groups. The

list of irreducible finite complex reflection groups is50 [130,181,232]:

1) The cyclic groups Zm in degree 1;

1) the symmetric group Sk+1 in the degree k representation (i.e. the Weyl group of Ak);

2) the groups G(m, d, k) where k > 1 is the degree, m > 1 and d | m;

3) 34 sporadic groups denoted as G4, G5, · · · , G37 of degrees ≤ 8.

For our purposes, we need to classify the embeddings of the Sphephard-Todd (ST) groups of rank-k

into the Siegel modular group Sp(2k,Z) modulo conjugacy. We shall say that a ST group is modular

iff it has at least one such embedding. A degree-k ST group G which preserves a lattice L ⊂ Ck is

called crystallographic [101,130]; clearly a modular ST group is in particular crystallographic.

Let K be the character field of an irreducible reflection group51 and O its ring of integers. One

shows that G ⊂ GL(k,O) [181], so G is crystallographic iff K is either Q or an imaginary quadratic

field Q[
√
−d]. The crystallographic Shephard-Todd groups are listed in table 3 together with their

character field K. The groups with K = Q are just the irreducible real crystallographic groups,

namely the Weyl groups of simple Lie algebras. Rank-k Weyl groups are obviously subgroups of

Sp(2k,Z). Let us consider the case K = Q[
√
−d]; we choose an embedding G ↪→ GL(k,O); since

G is finite and absolutely irreducible, it preserves an Hermitian form with coefficients in O, of the

form Hijψ
iψ̄j where52 ψi ≡ xi + ζyi ∈ Ok, (xi, yj) ∈ Z2k, and H̄ij = Hji. Hence it preserves the

skew-symmetric form with rational coefficients

1

ζ − ζ̄
Hij ψ

i ∧ ψ̄j . (6.7)

48 A degree-k reflection group G is a concrete group of k × k matrices generated by reflections, i.e. by matrices
g ∈ G such that dim coker(g− 1) = 1. In particular, a reflection group comes with a defining representation V , whose
dimension k is called the degree of the reflection group.

49 More generally, subgroups of duality-frame groups S(Ω)Z.
50 In the classification one does not distinguish a group and its complex conjugate since the two are conjugate in

GL(V ).
51 Note that if K is the character field of an irreducible finite complex reflection group G, then Gal(K/Q) is Abelian.

Moreover, if G is crystallographic, its class number is h(K) = 1.
52 ζ ∈ O is an integer of Q[

√
−d] such that {1, ζ} is a basis of the ring O as a Z-module. Clearly ζ̄ 6= ζ.
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Clearing denominators, we get a non-degenerate integral skew-symmetric form Ω on Z2k which

is preserved by G whose entries have no non-trivial common factor. The given embedding G ↪→
GL(k,O) induces an embedding G ↪→ Sp(2k,Z) iff det Ω = 1; in particular, we have the necessary

condition

detH is a k-th power in Q. (6.8)

Example 5. In the Introduction we claimed that there is no rank-2 CSG with principal polar-

ization and Coulomb dimensions {∆1,∆2} = {12, 8}. However, the crystallographic ST group G8

has degrees53 {12, 8} so C2/G8 is potentially a candidate counter-example to our claim. The only

way out is to show that G8 6⊂ Sp(4,Z), so that this particular CSG is consistent only for suitable

non-principal polarizations. Up to conjugacy, there is a unique embedding G8 ↪→ GL(2,Z[i]) [114],

generated by two reflections r1, r2, with invariant Hermitian form H:

r1 =

i i

0 1

 , r2 =

 1 0

−1 i

 , H =

 2 1− i

1 + i 2

 (6.9)

detH = 2 is not a square in Q, and hence the polarization is non-principal with charge multipliers

(e1, e2) = (1, 2) (cfr. eqn.(5.2)). Thus G8 is no contradiction to our claim. We shall return to this

in section 5.

For the groups G(m, d, k) with m = 3, 4, 6 the usual monomial basis is both defined over O and

orthonormal, so detH = 1 and they are all subgroups of Sp(2k,Z). However, for special values of

(m, d, k) we may have more than one inequivalent embeddings in Sp(2k,Z):

Lemma 6.2.1 ([114]). Consider G(m, d, k) with m = 3, 4, 6 and (m, d, k) 6= (m,m, 2); there is a

single conjugacy class of embeddings G(m, d, k) ↪→ Sp(2k,Z) except for m = 3, 4 ≡ ps (p = 3, 2 is

a prime), 1 < d | ps, and p | k in which case we have p+ 1 inequivalent embeddings.

Remark 6.2.1. This statement is the complex analogue of the usual GSO projection of string

theory [212]. Indeed, consider the real reflection group G(2, 2, k) ≡Weyl(Dk) and count the number

of inequivalent embeddings54 G(2, 2, k) ↪→ SO(k,Z) ⊂ Sp(2k,Z), or equivalently the number of

maximal local subalgebras of the Spin(2k)k chiral current algebra. We have just one, generated

by the free fermion fields ψa(z) unless p ≡ 2 | k in which case we have 3 ≡ 2 + 1 of them, the

additional ones being the two GSO projections of opposite chirality. In the complex case, chirality

is replaced by a Zp symmetry. The proof is essentially the same as in the GSO case [114].

Example 6. A Lagrangian SCFT with gauge group
∏
iGi at extreme weak coupling has a CSG

which asymptotically takes this constant period form with G =
∏
i Weyl(Gi) in the standard reflec-

tion representation.

Example 7. The model associated to the group G(m, 1, k) (m = 3, 4, 6) has the simple physical

interpretation of representing (the birational class of) the rank-k MN Er SCFT for r = 6, 7, 8,

respectively. Indeed, geometrically the quotient of Ck by G(m, 1, k) is the same as taking the k-fold

53 In fact {12, 8} are even regular degrees in the sense of Springer theory.
54 In addition there is an embedding G(2, 2, k) ↪→ Sp(2k,Z) which does not factor through SO(k,Z).
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Q ST names Z2 G(2, 1, k) G(2, 2, k) G(6, 6, 2) Sk+1 G28 G35 G36 G37

Coxeter A1 Bk Dk G2 Ak F4 E6 E7 E8

Q(ζ3) ST names Z3 Z6 G(m, d, k) G4 G5 G25 G26 G32 G33 G34

notes m = 3, 6; d | m
(m, d, k) 6= (m,m, 2)

Q(i) ST names Z4 G(4, d, k) G8 G29 G31

notes d | 4
(4, d, k) 6= (4, 4, 2)

Q(
√
−2) ST names G12

Q(
√
−7) ST names G24

Table 3: The Shephard-Todd irriducible complex cristallographic groups; ζ3 stands for a primitive
third root of 1. The excluded cases are G(3, 3, 2) ≡Weyl(A2), G(6, 6, 2) ≡Weyl(G2), and G(4, 4, 2),
which is conjugate in U(2) to Weyl(B2).

symmetric product of quotient of C by Zm. Correspondingly, the isotropy group of the diagonal

period matrix, Fix(e2πi/m 1k) ⊂ Sp(2k,Z), is G(m, 1, k) (see [111] for a discussion in the k = 3

case). The dimensions are {∆, 2∆, 3∆, · · · , k∆} with ∆ = m.

Example 8. The CSG geometries associated to the groups G(m, d, k) are just Zd covers of the

previous one. We have a new operator O of dimension km/d such that Od is the MN operator of

maximal dimension.

Example 7 may be generalized. One has a CSG M and takes the n-th symmetric power. This

works well if M has dimension 1, but in general the resulting geometry may be more singular than

permitted.

In general, when we have a CSG of the form Ck/G, where G =
∏
a Ga with Ga irreducible

reflection groups, and, in addition, R = C[a1, · · · , ak]G , the Coulomb dimensions are equal to the

degrees of G. The period τ , being symmetric, transforms in the symmetric square of the defining

representation V of the reflection group G ⊂ Sp(2k,Z) (see §.10.2 below). Hence the dimension

of the space of allowed deformations of τ , that is, the dimension d of the conformal manifold

of a constant-period CSG is given by the multiplicity of the trivial representation in �2V . By

Schur-Frobenius,

d =
1

2 |G|
∑
g∈G

(
χV (g)2 + χV (g2)

)
=

 multiplicity of 2

as a weight of G
=

 # irreducible factors Ga
which are Weyl groups,

(6.10)

since a reflection group has a degree 2 invariant iff it is defined over the reals (and hence, if

crystallographic, should be a Weyl group). The physical interpretation of this result is that such a

CSG represents a gauge theory with gauge group the product of all simple Lie groups whose Weyl

groups are factors of G coupled to some other intrinsically strongly interacting SCFT associated to

the complex factor groups Ga (as well as hypermultiplets in suitable representations of the gauge

group). The d marginal deformations of the geometry are precisely the d Yang-Mills couplings
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which are associated to d chiral operators with ∆ = 2. Note that the Yang-Mills couplings may be

taken as weak as we please.

Thus the Lagrangian models and higher MN SCFTs already account for all CSG with constant

period map up (at most) to finitely many exceptional ones.
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Part III

Fine classification of the SW geometry in

rank k = 1
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7 Special geometry and rational elliptic surfaces

7.1 Summary of the previous definitions

In the literature there are several “morally equivalent” definitions of “Special Geometry”. In order

not to confuse the reader, we recall here explicitly the definitions we are using in this thesis.

We start from the most basic, physically defined, object: the chiral ring R, i.e. the ring of all

(quantum) chiral operators in the given 4d N = 2 theory. R is a commutative associative C-algebra

with unit and also a finitely-generated domain.

Remark 7.1.1. A priori we do not require R to be a free polynomial ring; this fact will be proven

below (in the case of interest). Neither we assume R to be normal, i.e. in principle we allow for the

“exotic” possibilities discussed in ref. [15], but rule them out (in rank 1) as a result of the analysis.

Definition 8. The Coulomb branch M of R is the complex-analytic variety M underlying the

affine scheme SpecR. Its complex dimension is called the rank of R. We write C(M) for the

function field of M i.e. the field of fractions of the domain R.

Remark 7.1.2. In rank-1, the normalization Rnor of the chiral ring R is a Dedekind domain, so

morally “ Rnor behaves like the ring of integers Z ”. This is the underlying reason why classification

in rank-1 is so simple.

Definition 9. Let R be a finitely-generated domain over C of dimension k. A special geometry

(SG) over SpecR is a quadruple (R, X,Ω, π) where:

a) X is a complex space of dimension 2k and Ω a holomorphic symplectic form on X;

b) π : X →M is a holomorphic fibration, with base the Coulomb branch M of R, such that the

fibers Fu ≡ π−1(u) are Lagrangian, i.e. Ω|Fu = 0 for u ∈M ;

c) π has a (preferred) section s0 : M → X. We write S0 := s0(M) for its image;

d) the fiber Fη over the generic point η of M is (isomorphic to) a polarized Abelian variety. The

restriction S0|Fη is the zero in the corresponding group.

In other words, a special geometry is a (polarized) Abelian variety over the function field C(M)

which, as a variety over C, happens to be symplectic with Lagrangian fibers.

Remark 7.1.3. The Coulomb branch M is an open space, so the definition of special geometry

should be supplemented by appropriate “boundary conditions” at infinity. Physically, the require-

ment is that the geometry should be asymptotic to the UV behavior of either a unitary SCFT or

an asymptotically free QFT. In the context of rank-1 special geometries, this condition (dubbed

UV completeness) will be made mathematically precise in §.7.3.

Definition 10. A Seiberg-Witten (SW) differential λ on a special geometry is a meromorphic

one-form λ on X such that dλ = Ω. We are only interested in special geometries admitting SW

differentials. We shall say that a special geometry is SW complete iff it admits “enough” SW

differentials, that is, all infinitesimal deformations of the symplectic structure Ω may be induced

by infinitesimal deformations of λ and viceversa.
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7.2 Rank-1 special geometries as rational elliptic surfaces

Kodaira-Néron models. Let R be a rank-1 chiral ring and η ∈ SpecR the generic point of

its Coulomb branch. The fiber over η, Fη, is open and dense in X, and may be identified with its

“good” locus of smooth fibers. In rank-1, Fη is (in particular) an elliptic curve E(C(M)) defined

over the function field C(M) of transcendence degree 1. By a model of the elliptic curve E(C(M))

we mean a morphism π : E → C between an algebraic surface E and a curve C whose generic fiber

is isomorphic to the elliptic curve E(C(M)) (i.e. to Fη). All models are birationally equivalent,

and contain the same amount of information. Most of the literature on Special Geometry uses the

minimal Weierstrass model, y2 = x3+ax+b, (a, b ∈ C(M)), which is easy to understand but has the

drawback that it is not smooth (in general) as a complex surface. A better tool is the Kodaira-Néron

model given by a (relatively minimal55) smooth compact surface E fibered over a smooth compact

curve C such that C(M) ∼= C(C). The Kodaira-Néron model always exists for one-dimensional

function fields [167,168,187,221,234], and is unique up to isomorphism. In particular, the smooth

model exists for all rank-1 special geometries. By definition, the generic fiber of π : E → C is a

smooth elliptic curve, and E is a smooth, relatively minimal, (compact) elliptic surface having a

section. The geometry of such surfaces is pretty well understood, see e.g. [33,167,168,191,221,234].

Note that, having a section, the surface E cannot have multiple fibers.

We say that an elliptic surface is trivial iff E ∼= E×C, that is, iff its fibers are all smooth elliptic

curves. This trivial geometry corresponds to a free N = 2 QFT. We shall esclude the trivial case

from now on, that is, for the rest of the thesis we assume that at least one56 fiber of E is singular.

Special geometries with this property will be called non-free. In the non-free case [33,168,191,221],

q(E) ≡ h0,1(E) = 0. (7.1)

The non-smooth fibers which may appear in E are the ones in the Kodaira list, see table 4.

Remark 7.2.1. (Weierstrass vs. Kodaira-Néron) The (minimal) Weierstrass model is obtained

from the smooth Kodaira-Néron surface, E , by blowing-down all components of the reducible fibers

which do not cross the reference section S0. If all exceptional fibers are irreducible (i.e. of Kodaira

types I1 and II) the two models coincide, and the flavor group is the “generic” E8. Otherwise the

blowing-down introduces singularities in the Weierstrass geometry. From the Weierstrass viewpoint,

the information on the flavor group is contained in these singularities, which are most easily analyzed

by blowing-up them. By construction, this means working with the Kodaira-Néron model.

The chiral ring R is free. Since C(C) ∼= C(M), we have

M = C \ suppD∞ (7.2)

for some effective divisor D∞. Then

X ∼= E \ suppπ∗(D∞). (7.3)

55 An elliptic surface is relatively minimal if its fibers do not contain exceptional −1 rational curves.
56 If E has singular fibers, it has at least 2 of them. If it has precisely 2 singular fibers, its functional invariant is

constant, and the special geometry describes an interacting SCFT with no mass deformation.
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In order to be a special geometry, X must be symplectic (the fibers of π are then automatically

Lagrangian). From eqn.(10.40) we have

Ω ∈ Γ(E ,KE(π∗D∞)), (7.4)

so that57 KE(π
∗D∞) ∼ OE , or

KE = −π∗[D∞]. (7.5)

We recall Kodaira’s formula for the canonical divisor KE of an elliptic surface with no multiple

fibers (see e.g. §.V.12 of [33])

KE = π∗ L, where L is a line bundle on C of degree pg(E) + 2g(C)− 1, (7.6)

where pg(E) ≡ h2,0(E) ≥ 0 (resp. g(C) ≡ h1,0(C) ≥ 0) is the geometric genus of E (resp. C).

Comparing eqns.(7.5)(7.6), yields L ∼ −D∞; since D∞ is effective, degL < 0, which is consistent

with eqn.(7.6) only if

pg(E) = g(C) = 0 =⇒ C ∼= P1 and degD∞ = 1, (7.7)

so that D∞ consists of a single point on P1 which we denote as ∞. The Coulomb branch is

M = P1 \∞ = C, (7.8)

and its ring of regular functions is R ∼= C[u].

The functional invariant J . The elliptic fibration π : E → P1 yields a rational function

(called the functional invariant of E [167,168])

J : P1 → P1, u 7→ J(τu), (7.9)

where (for u ∈ P1 ≡ π(E)) τu ∈ H is the modulus of the elliptic curve π−1(u) and J(z) ≡ j(z)/1728,

j(z) being the usual modular invariant [230]. The function J determines E up to quadratic

transformations [191]. A quadratic transformation consists in flipping the type of an even number

of fibers according to the rule

Ib ↔ I∗b , II ↔ IV ∗, III ↔ III∗, IV ↔ II∗. (7.10)

Scale-invariant vs. mass-deformed special geometries. As we shall see momentarily,

the special geometries associated to scale-invariant N = 2 SCFT are precisely the ones described

by a constant function J . Mass-deformed geometries instead have functional invariants of positive

degree, deg J > 0. Our approach applies uniformly to both situations.

The surface E is rational. The divisor −KE is effective, so all plurigenera vanish (i.e. E has

Kodaira dimension κ(E) = −∞). Since q(E) = 0, E is rational by the Castelnuovo criterion [33].

57 Here ∼ denotes linear equivalence.
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The other numerical invariants of E are [33,191]:

topological Euler number e(E) = 12, b1(E) = 0, b2(E) = h1,1(E) = %(E) = 10. (7.11)

The Néron-Severi group NS(E) ∼= Pic(E)/Pic(E)0 is then a unimodular (odd) lattice of signature

(1, 9). In facts E , being a relatively minimal rational elliptic surface with section, is just P2 blown-up

at 9 points (see Theorem 5.6.1 of [85] or §. VIII.1 of [191]). Note that the Kodaira-Néron surfaces

of all rank-1 special geometries have the same topological type allowing for a uniform discussion

of them. This does not hold in the Weierstrass approach, since the blowing down kills cohomology

classes in a model dependent fashion.

The class F of any fiber is −KE . By the moving lemma F 2 = 0, so K2
E = 0. Let S0 be the zero

section. One has KE · S0 = −F · S0 = −1. Then, by adjunction,

− 2 = 2 g(P1)− 2 = S2
0 +KS · S0 =⇒ S2

0 = −1, (7.12)

so that the zero section S0 is an exceptional (−1)-line. Contracting it we get a weak degree 1 del

Pezzo surface, see §. 8.8.3 of [100].

The Euler number of E is the sum of the Euler numbers of its singular fibers. So

12 = e(E) =
∑
u∈U

e(Fu), (7.13)

where U ⊂ P1 is the finite set of points with a non-smooth fiber. The Euler numbers e(F ) for the

various types of singular fibers are listed in table 4. Note that for all additive∗ fibers e(F ∗) ≥ 6, so

eqn.(7.13) implies that we can have at most one additive∗ fiber with the single exception of {I∗0 , I∗0}
which is (the Kodaira-Néron model of) the special geometry of N = 4 SYM with gauge group

SU(2). Since a quadratic transformation preserves the parity of the number of ∗, the function J

specifies completely E if there are no additive∗ fibers, while if there is one such fiber we are free

to flip the type of the additive∗ fiber and of precisely one other fiber (possibly regular) by the rule

7.10. This process is called transfer of ∗ [192].

E and the symplectic structure of (X,Ω). We write F∞ = π−1(∞) for the fiber at infinity.

Then

X = E \ F∞. (7.14)

From eqn.(7.4) we see that the pair (E , F∞) uniquely fixes the symplectic structure Ω up to overall

normalization. Physically, the overall constant may be seen as a choice of mass unit.

Moduli of rational elliptic surfaces with given singular fibers. The rational elliptic

surfaces with a given set of singular fiber types, {Fu}u∈U , are in one-to-one correspondence with

the rational functions J consistent with the given fiber types {Fu}u∈U modulo the action of

Aut(P1) ≡ PSL(2,C). We adopt the convention that the number of fibers of a given Kodaira type

is denoted by the corresponding lower-case roman numeral, so (say) iii stands for the number of

fibers of type III while iv∗ for the number of fibers of type IV ∗. We also write s, a◦, and a∗ for,

respectively, the total number of semi-stable, additive◦, and additive∗ singular fibers (cfr. table 4).
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category type e(F ) m(F ) m(F )(1) o(F ) u(F ) d(F ) semi-simple R(F )

stable (regular) I0 0 1 1 0 0 0 X

semi-stable Ib≥1 b b b - - b no Ab−1

additive◦ II 2 1 1 1 0 0 X

III 3 2 2 0 1 0 X A1

IV 4 3 3 2 0 0 X A2

additive∗ I∗0 6 5 4 0 0 0 X D4

I∗b≥1 6 + b 5 + b 4 - - b no D4+b

II∗ 10 9 1 2 0 0 X E8

III∗ 9 8 2 0 1 0 X E7

IV ∗ 8 7 3 1 0 0 X E6

Table 4: Kodaira fibers and their numerical invariants. I0 is the regular (generic) fiber, all other
types are singular. Additive fibers are also called unstable. Additive fibers come in two categories:
un-starred and starred ones. A fiber is simply-connected iff it is additive; then e(F ) = m(F )+1. A
fiber type is reducible if it has more than one component, i.e. m(F ) > 1. A fiber F is semi-simple
iff the local monodromy at F is semi-simple. The last column yields the intersection matrix of the
non-identity component of the reducible fibers. m(F )(1) is the number of simple components in the
divisor Fu equal to the order of the center of the simply-connected Lie group in the last column.

As already anticipated, we distinguish two kinds of geometries:

scale-invariant: J is constant, that is, the coupling τu does not depend on the point u in the

Coulomb branch M , and the special geometry is scale-invariant. The fiber configurations

of the elliptic surfaces with J constant which satisfy the physical requirement of UV com-

pleteness (see §.7.3) are listed in table 5. Each of the first three elliptic surfaces describe two

distinct N = 2 SCFT, having Coulomb branch dimension ∆ and ∆/(∆ − 1), depending on

which of the two singular fibers is placed at ∞: see §.7.3, in particular eqn.(7.33);

mass-deformed: J has positive degree d > 0 and satisfies the following properties [168,191] (cfr.

table 4):

• J has a pole of order b at fibers of types Ib, I
∗
b ;

• the order of zero ν0(F ) of J at a fiber of type F is ν0(F ) = o(F ) mod 3;

• the order of zero ν1(F ) of J − 1 at a fiber of type F is ν1(F ) = u(F ) mod 2.

Since the degree of J is d =
∑

u d(Fu), J is constant iff all fibers are semi-simple.

From table 4 we see that

e(F ) = d(F ) + 2o(F ) + 3u(F ) +

{
0 F ∈ {semi-stable} ∪ {additive◦}
6 F ∈ {additive∗}.

(7.15)

Suppose d > 0, and let ai be the positions of the poles, bj the positions of 0’s and ck the positions
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{II∗, II} {III∗, III} {IV ∗, IV } {I∗0 , I∗0}

Table 5: List of singular fiber configurations for J constant containing at most one additive◦

fiber [192]. They describe SCFTs with masses and relevant perturbations switched off.

of 1’s of J . We have

J(z) = A

∏n0
j=1(z − bj)ν0(j)∏p
i=1(z − ai)b(i)

= 1 +B

∏n1
k=1(z − ck)ν1(k)∏p
i=1(z − ai)b(i)

, (7.16)

where n0 (resp. n1) is the (maximal) number of distinct 0’s (resp. 1’s)

n0 = ii+ iv + ii∗ + iv∗ +
d−

∑
i o(Fi)

3
, n0 = iii+ iii∗ +

d−
∑

i u(Fi)

2
, (7.17)

and p is the number of non-semi-simple fibers, p ≡ s +
∑

b≥1 i
∗
b . PSL(2,C) allows to fix three

points; the number of effective parameters is then n0 + n1 + p − 1, while the equality of the two

expressions in (7.16) yields d + 1 relations. Thus the space of rational functions has dimension

µ ≡ n0 + n1 + p− d− 2, or

µ+ i∗0 = s+ a◦ + 2a∗ − 1

6

[
d+ 2

∑
i

o(Fi) + 3
∑
i

u(Fi) + 6a∗
]
− 2 (7.18)

The number of fibers of a given type is restricted by eqn.(7.13). Using (7.15)

12 = d+
∑
i

(2o(Fi) + 3u(Fi)) + 6a∗, (7.19)

so that

µ+ i∗0 = s+ a◦ + 2a∗ − 4. (7.20)

Hurwitz formula applied to the covering J : P1 → P1 implies [191]

µ+ i∗0 ≥ 0. (7.21)

A fiber configuration {Fu}u∈U which violates the bound (7.21) cannot be realized geometrically.

The bound is saturated if and only if: i) J is a Belyi function58 [174,247] and ii) the order of the

zeros of J (resp. of J − 1) is ≤ 3 (resp. ≤ 2) [191].

The number of parameters from which a d > 0 special geometry (X,Ω) depends is

n ≡ µ+ i∗0 + 1 ≡ s+ a◦ + 2a∗ − 3, (7.22)

where the term i∗0 arises from the choice of the locations where we insert the I∗0 fibers (by quadratic

transformation of some regular fiber I0) and the +1 is the overall scale of Ω.

58 Recall that a function C → P1 (C a compact Riemann surface) is a (normalized) Belyi function iff it ramifies
only over the three points {0, 1,∞}.
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F Ib<2 Ib≥2 I∗b b even I∗b b odd II, II∗ III, III∗ IV , IV ∗

Z(F ) {0} Z/bZ Z/2Z× Z/2Z Z/4Z {0} Z/2Z Z/3Z

Table 6: The Abelian group Z(F ) of a Kodaira fiber of type F .

ADE and all that. The exceptional fibers Fu are in general reducible with m(Fu) irreducible

components Fu,α, see table 4. The divisor of π−1(u) has the form

(
π−1(u)

)
=

m(Fu)−1∑
α=0

nα Fu,α, (7.23)

where the nα are positive integers. A component Fu,α is said to be simple iff nα = 1. The numbers

of simple components for each fiber type, m(F )(1), are listed in table 4. By the moving lemma we

have

F ∼
m(Fu)−1∑
α=0

nα Fu,α and Fu,α · F = 0 for all u, α. (7.24)

Let S0 be the zero section. Since Fu ·S0 = 1 for all u, the section S0 intersects a single component

of the fiber Fu which must be simple. This component is said to be the identity component, and

will be denoted as Fu,0. Forgetting the identity component Fu,0, we remain with the set Fu,α,

α = 1, · · · ,m(Fu)− 1 of irreducible divisors whose intersection matrix

Fu,α · Fu,β = −C(Fu)αβ α, β = 1, · · · ,m(Fu)− 1 (7.25)

is minus the Cartan matrix C(Fu) of the ADE root system R(Fu). The root systems R(F ) for the

various fiber types are listed in the last column of table 4. One has

rankR(F ) = e(F )−

{
1 F ∈ semi-stable

2 F ∈ additive◦ ∪ additive∗.
(7.26)

To each R(F ) we associate a finite Abelian group

Z(F ) = Γweigth
lattice

/
Γ root

lattice
(7.27)

isomorphic to the center of the simply-connected Lie group associated to R(F ). From the table we

see that |Z(F )| = m(F )(1), and indeed, Z(F ) acts freely and transitively on the simple components

of a reducible fiber. See table 6.

Allowed fiber configurations and Dynkin theorem. A fundamental problem is to list

the configurations of singular fibers, {Fu}u∈U which are realized by some rational elliptic surface.

There are 379 fiber configurations which satisfy eqn.(7.13). Of these 100 cannot be geometrically

realized, most of them because they violate the Hurwitz bound (7.21). For the list of those which

can be realized see refs. [192,210].
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The realizable fiber configurations may be understood in Lie-theoretic terms. From its numerical

invariants, eqns.(7.7)(7.11), we infer that E , seen as a compact topological 4-fold, has intersection

form H2(E ,Z) × H2(E ,Z) → Z isomorphic to U ⊕ E−8 , where E−8 stands for the E8 root lattice

with the opposite quadratic form (see §.8.2 for details). The classes of the non-identity components

of the reducible fibers belong to the E−8 part, so that homology yields an embedding of roots

lattices [192,205,210,221] ⊕
reducible
fibers Fu

R(Fu)� E8. (7.28)

Two such embeddings are equivalent if they are conjugate by the Weyl group Weyl(E8). The

classification of all inequivalent embeddings was given by Dynkin [109]. There are 70 root systems

which may be embedded in E8, all but 5 of them in an unique way. The special 5 have two

inequivalent embeddings each. They are

A7, A3 ⊕A3, A5 ⊕A1, A3 ⊕A1 ⊕A1, A1 ⊕A1 ⊕A1 ⊕A1. (7.29)

Three out of the 70 sub-root systems cannot be realized geometrically because they violate Euler’s

bound (7.13). The full list of allowed singular fiber configurations, {Fu}u∈U , is then obtained by

consider the various ways of producing a given allowed embedding of a root system in E8.

Aside: Dessin d’enfants. When the bound (7.21) is saturated, the functional invariant

J is (in particular) a Belyi function. Belyi functions are encoded in their Grothendieck dessin

d’enfants [174,247]. Since it is often easier to work with dessins than with functions, we recall that

story even if we don’t need it.59 A Belyi function f is a holomorphic map from some Riemann

surface Σ to P1 which is branched only over the three points 0, 1 and ∞. If a Belyi functions

exists, Σ and f are defined over the a number field. The dessin of f is a graph G ⊂ Σ which is

the inverse image of the segment [0, 1] ⊂ P1. The inverse images of 0 (resp. 1) are represented by

white60 nodes ◦ (black nodes •). The coloring makes G into a bi-partite graph. G is a connected

graph whose complement, Σ \G is a disjoint union of disks in one-to-one correspondence with the

inverse images of ∞.

If the bound (7.21) is saturated, all white (black) nodes have valency at most 3 (2).

Example 9. The dessins of Argyres-Douglas of type A2 and of pure SU(2) SYM are (the first one

is drawn in a chart of P1 around ∞)

Argyres-Douglas A2: ◦ •

pure SYM: • ◦ • ◦ •

(7.30)

These are special instances of double flower dessins [174] so that the special geometry for these

QFTs is rational (i.e. defined over Q).

If the bound (7.21) is not saturated, so that the space S({Fu}) of rational functions J has

59 For a survey see [247].
60 We use the coloring convention of [247]. Ref. [174] uses the opposite convention.

67



positive dimension, and deg J ≥ 2, we may still found some exceptional points Pσ ⊂ S({Fu})
where J becomes a Belyi function (however the nodes will have larger valency).

Example 10. Consider the fiber configuration {II; I4, I
6
1} which corresponds to the Argyres-Wittig

SCFT [25] with ∆ = 6 and flavor symmetry Sp(10). It has µ = 4, that is, n = 5 ≡ rank sp(10).

The bound (7.21) is far from being saturated, but nevertheless there is a dimension 1 locus in the

space of mass parameters where the model is described by the dessin

• ◦ • ◦ • (7.31)

7.3 UV completeness and the fiber F∞ at infinity

As already mentioned, the possible fibers F∞ at ∞ are rescricted by the condition of “UV com-

pleteness”. Heuristically this means that we can make sense out of the QFT without introducing

extra degrees of freedom at infinite energy (they would play the role of Pauli-Vilards regulators

that we cannot get rid off). This translates in the condition that F∞ is simply-connected, hence

additive (≡ unstable). There are only 11 additive fibers which can appear in a rational elliptic

surface
semisimple︷ ︸︸ ︷

II, III, IV, II∗, III∗, IV ∗, I∗0 ,

non-semisimple︷ ︸︸ ︷
I∗1 , I

∗
2 , I
∗
3 , I
∗
4 . (7.32)

I∗b≥7 are ruled out because their Euler number > 12 and the fiber configurations {I∗6}, {I∗5 , I1}
because they have µ = −2 and −1 respectively. The seven semi-simple fibers in (7.32) correspond

to the seven UV asymptotic special geometries61 for a non-free SCFT, which are labelled by the

dimension ∆ of the chiral operator parametrizing the Coulomb branch:

additive semi-simple F∞ II III IV II∗ III∗ IV ∗ I∗0

∆ 6 4 3 6/5 4/3 3/2 2
(7.33)

while the 4 non semi-simple ones describe the possible UV behavior of asymptotically-free theo-

ries. Note that the correspondence between fiber type at infinity, F∞, and the Coulomb branch

dimension, ∆, is the opposite of the usual one since the monodromy at infinity M∞ in the Coulomb

branch is related to the local monodromy around the fiber at infinity, M(F∞), by an inversion of

orientation

M∞ = M(F∞)−1. (7.34)

This is consistent with the usual statements in the SCFT context, since in the zero-mass limit E
becomes a constant geometry with fiber configuration {F∞;F0} with

M∞ = M(F0) ≡M(F∞)−1, (7.35)

and in the literature it is usually stated the zero-mass limiting correspondence F0 ↔ ∆.

61 By “UV asymptotic special geometry” we mean the behavior of the geometry for large u ∈ C.
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Asymptotically free QFTs. F∞ = I∗b yields the UV asymptotic special geometry of SU(2)

SYM coupled to Nf = 4 − b fundamentals. This relation implies both the UV geometrical bound

b ≤ 4 and the physical UV bound Nf ≤ 4, and illustrates as the additive reduction of the fiber at

infinity captures the physical idea of UV completeness (i.e. β ≤ 0).

SU(2) withNf fundamentals and generic masses corresponds to the fiber configuration {I∗4−Nf ; I
Nf+2
1 }.

Using eqn.(7.22) we see that the number of parameters on which this geometry depends is

n(Nf ) = Nf + 1 (7.36)

which is the physically correct number: the masses and the Yang-Mills scale Λ for Nf ≤ 3, the

masses and the coupling constant gYM for Nf = 4 (which correspond to +i∗0 in eqn.(7.22)).

{I∗4 ; I2
1} is the only fiber configuration with F∞ = I∗4 [210]; it corresponds to an extremal rational

elliptic surface [193] (defined over Q). Thus pure SU(2) SYM is unique in its UV class. There

are two configurations with F∞ = I∗3 , {I∗3 ; I3
1} and {I∗3 , II, I1}; the second one will be ruled out in

§.8.3.1 on the base that is has no “enough” SW differentials. Hence SU(2) SQCD with Nf = 1 is

also unique in its UV class. There are six configurations with F∞ = I∗2 , three of which are ruled

out by the same argument. The remaining 3 are either the standard SQCD or special cases of it.

Finally, there are 13 configurations with F∞ = I∗1 ; 8 of them are ruled out as before, while 5 look

like special instances of SQCD with Nf = 3.

The UV asymptotics of the special geometry. The behavior of the periods (b(u), a(u)) as

we approach u =∞ for each of the 11 allowed fibers at infinity, eqn.(7.32), may be read (including

the sub-leading corrections!) in table (VI.4.2) of [191]. If u is a standard coordinate on the Coulomb

branch, as u→∞ the special geometry periods behave as(
b(u), a(u)

)
=
(
u r2(1/u), u r1(1/u)

)
u large, (7.37)

where the functions r1(t), r2(t) are listed in the table of ref. [191]. In the particular case of a

geometry which is UV asymptotic to a SCFT, F∞ is semi-simple, and a(u) ' u1/∆ with ∆ as in

eqn.(7.33), confirming the correspondence F∞ ↔ ∆.

The “generic” massive deformation. As an example, let us consider the generic config-

uration with a marked fiber F∞ of one type in eqn.(7.32), i.e. {F∞; I
12−e(F∞)
1 }, which is always

geometrically realized. The number of parameters n(F∞) in the geometry is

n(F∞) = 12− e(F∞)−

{
2 F∞ ∈ {additive◦}
1 F∞ ∈ {additive∗},

(7.38)

which precisely matches the number of physical relevant+marginal deformations for the theory

with Coulomb dimension ∆ having the largest possible flavor symmetry of rank

rank f = 8− rankR(F∞) ≡ 10− e(F∞). (7.39)
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8 SW differentials vs. Mordell-Weil lattices

We have not yet enforced one crucial property of the special geometries relevant for N = 2 QFT,

namely the existence of Seiberg-Witten (SW) differentials with the appropriate properties. In this

section we consider the restrictions on the pair (E , F∞) coming from this requirement.

8.1 SW differentials and horizontal divisors

A SW differential λ is a meromorphic one-form on the total space X = E \ F∞ or, with non-

trivial residue along a simple normal-crossing effective divisor DSW , such that dλ = Ω in X. Let

DSW =
∑

iDi, be the decomposition of DSW into prime divisors. Standard residue formulae

[88,139,242] yield the following equality in cohomology [224] (see [104] for a nice discussion in the

present context)

[Ω] =
∑
i

µi[Di], (8.1)

where the complex coefficients µi are linearly related to the masses ma living in the Cartan sub-

algebra h of the flavor Lie algebra f = Lie(F) [223, 224]. For the relation of this statement to the

Duistermaat-Heckman theorem in symplectic geometry, see [104]. We may rewrite (11.2.1) in terms

of the independent mass parameters ma as

[Ω] =

rank(f)∑
a=1

ma[La], (8.2)

for certain non effective divisors La on X. The surface E (with a choice of zero section S0) has an

involution corresponding to taking the negative in the associated Abelian group. Since λ is odd

under this involution, the divisors La belong to the odd cohomology [224].

The closure in the smooth elliptic surface E of the divisors Di, La (originally defined in the

open quasi-projective variety X ⊂ E) yields divisors on E which we denote by the same symbols.

A divisor on an elliptic surface π : E → M contained (resp. not contained) in a fiber is called

vertical (resp. horizontal) [191, 221]. The divisors Di, La cannot be contained in a fiber F of E ,

since the masses are well-defined at all generic points u ∈ M and u independent.62 We conclude

that the divisors Di, La are horizontal. Since the fibers are Lagrangian and the ma independent,

eqn.(8.2) implies63

Ω
∣∣
Fu,α

= 0 =⇒ Fu,α · La = 0 for all a, u, α. (8.3)

Thus, to determine the flavor symmetry F associated to a given special geometry (E , F∞),

preliminarly we have to understand the geometry of its horizontal divisors. In the next subsection

we review this elegant topic. We shall resume the discussion of Special Geometry in §. 8.3.

8.2 Review: Néron-Severi and Mordell-Weil groups

The Néron-Severi group. We see the divisors Di, La on E as elements of the Nerón-

Severi group NS(E), the group of divisors on E modulo algebraic equivalence. For all projective

62 A more formal argument is as follows. The primitive divisors contained in the fibers are compact analytic
submanifolds of X, hence as cohomology classes have type (1, 1) while Ω has type (2, 0).

63 Again, this also follows from type considerations.
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variety Y , the Néron-Severi group NS(Y ) is a finitely-generated Abelian group [139,221]. Its rank,

%(Y ) := rankNS(Y ), is called the Picard number of Y .

In the case of a projective surface S, the intersection pairing 〈−,−〉 endows64

Num(S) := NS(S)/NS(S)tors (8.4)

with a non-degenerate, symmetric, integral, bilinear pairing of signature (1, %(S) − 1) having the

same parity as the first Chern class. In other words, (Num(S), 〈−,−〉) is a non-degenerate lattice.

For an elliptic surface E , the Néron-Severi group is torsion-free, so Num(E) = NS(E), and the

Néron-Severi group is itself a lattice.

If, in addition, the elliptic surface E is rational, we have the further identification with the

Picard group: Num(E) = NS(E) = Pic(E), that is, linear and numerical equivalence coincide. In

this case pg(E) = 0, %(E) = 10, and NS(E) is an (odd) unimodular lattice of signature (1, 9); by

general theory it is isomorphic to

U ⊕ E−8 , (8.5)

where U is the rank 2 lattice with Gram matrix−1 1

1 0

 , (8.6)

and E−8 is the opposite65 of the E8 root lattice (its Gram matrix is minus the Cartan matrix of

E8). E−8 is the unique negative-definite, even, self-dual lattice of rank 8 [230]. The sublattice U in

(8.5) is spanned by the zero section S0 and the fiber F .

The Néron-Severi group NS(E) of a rational elliptic surface contains an obvious subgroup, called

the trivial group, Triv(E), generated by the zero section S0 and all the vertical divisors, that is, the

irreducible divisors Fu,α contained in some fiber Fu. The rank of the trivial group is

rankTriv(E) = 2 +
∑
u∈U

(
m(Fu)− 1

)
≥ 2 (8.7)

where U ⊂ P1 is the finite set of points at which the fiber is not smooth and m(Fu) is the number of

irreducible components Fu,α of the fiber at u (see table 4). The only relations between the vertical

divisors Fu,α are
∑

α nα Fu,α = F , from which we easily get eqn.(8.7). In facts, Triv(E) is the lattice

U ⊕R−, (8.8)

where R− is the lattice generated by all irreducible components of the fibers which do not meet

the zero section S0. As reviewed in the previous section, the opposite lattice R of R− is the direct

(i.e. orthogonal) sum of the roots lattices of ADE type associated to each reducible fiber (see last

column of table 4)

R =
⊕

u : m(Fu)>1

R(Fu). (8.9)

64 The free Abelian group Num(S) is the group of divisors modulo numerical equivalence.
65 Given a lattice L, by its opposite lattice L− we mean the same Abelian group endowed with a bilinear pairing

which is minus the original one.
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Definition 11. The orthogonal complement R⊥ of R in E8 is called the essential lattice Λ.

The group Z(E). The intersection form 〈−,−〉 yields a map

NS(E)→ R∨ := Hom(R,Z), (8.10)

and, passing to the quotient, (cfr. eqn.(7.27))

γ : NS(E)→ R∨/R ≡
⊕

u : m(Fu)>1

Z(Fu) =: Z(E). (8.11)

We note that

Triv(E) ⊂ ker γ. (8.12)

E8-root curves. A rational curve C ⊂ E is said to be a E8-root curve iff its class C ∈ NS(E)

is a root of the E−8 lattice (cfr. eqn.(8.5)). In other words, C is a E8-root curve iff the following

three conditions are satisfied

F · C ≡ −KE · C = 0, S0 · C = 0, C2 = −2. (8.13)

An E8-root curve is a particular case of a (−2)-curve [100]. It is clear that a rational elliptic surface

E may have at most 240 E8-root curves (240 being the number of roots of E8).

The Mordell-Weil group of sections. As discussed in section 2, a rank-1 special geometry

is, in particular, an elliptic curve E/K defined over the field of rational functions K ≡ C(u). The

Mordell-Weil group MW(E/K) of an elliptic curve E defined over some field K is the group E(K)

of its points which are “rational” over K, that is, whose coordinates lay in K and not in some

proper field extension [56, 178, 187, 235]. When K is a number field, the Mordell-Weil theorem of

Diophantine Geometry states66 that the Abelian group E(K) is finitely-generated [56,178,187,235].

When K (as in our case) is a function field defined over C, the Mordell-Weil theorem must be

replaced by the Néron-Lang one [175, 178]: there is an Abelian variety B over C of dimension ≤ 1

(an Abelian variety of dimension zero being just the trivial group 0), and an injective map defined

over K [179]

trK/C : B → E, (the trace map) (8.14)

such that the quotient group E(K)/trK/C(B) is finitely generated.

We may rephrase the above Diophantine statements in geometric language in terms of our

Kodaira-Néron model, which is a rational elliptic surface π : E → P1 with a reference section

s0 : P1 → E . The (scheme-theoretic) closure in E of a point of E defined over C(u) is the same

as a section of π. Thus the set of all sections of π is an Abelian group (with respect to fiberwise

addition) isomorphic to the “abstract” Mordell-Weil group MW(E) ≡ MW(E/K). The preferred

section S0 (the image of s0) plays the role of zero in this group.

66 The Mordell-Weil and the Néron-Lang theorems are stated in general for arbitrary Abelian varieties, not just
for elliptic curves.
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The Abelian variety B/C is non-trivial iff the fibers Fu of E are all isomorphic elliptic curves;

in this case E ∼= B × P1 and the special geometry is trivial. As before, we focus on non-trivial

geometries where B = 0. Then the group MW(E) is finitely generated by the Néron-Lang theorem.

A section S defines a horizontal divisor on E . By Abel theorem, addition in MW(E) corresponds

to addition in NS(E)/Triv(E) ≡ Pic(E)/(vertical classes)

S1 + S2 = S3 in MW(E) ⇐⇒ (S1) + (S2) = (S3) in NS(E)/Triv(E), (8.15)

so that, in our special case, the Néron-Lang theorem follows from the finite-generation of the

Néron-Severi group.

The basic result is

Theorem 5 (Thm. (VII.2.1) of [191], Thm. 6.5 of [221]). Let E be a (relatively minimal) rational

elliptic surface. The following sequence (of finitely-generated Abelian groups) is exact

0→ Triv(E)→ NS(E)
β−→ MW(E)→ 0. (8.16)

In particular, the Shioda-Tate formula holds

rankMW(E) = 8−
∑
u∈U

(
m(Fu)− 1

)
. (8.17)

In addition, using (8.12), the map γ factors through MW(E) so we get a map

γ : MW(E)→ Z(E) (8.18)

which is injective on the torsion subgroup.

Remark 8.2.1. The involution of E acts on the Abelian group MW(E) as S 7→ −S. Hence the

even cohomology is in the kernel of β.

From eqns.(8.5)(8.8)(8.9) we see that (after flipping the overall sign!!)

MW(E) ∼= E8

/
R ≡ E8

/ ⊕
m(Fu)>1

R(Fu) . (8.19)

The exact sequence (8.16) does not split (in general). However it does split once tensored with

Q. Then we define NS(E)Q := NS(E)⊗Q. The orthogonal projection

ΦQ : MW(E)→ NS(E)Q, (8.20)

splits β. Explicitly [221],

ΦQ : S 7−→ S − S0 + (1 + S · S0)F +
∑
u∈U

m(Fu)−1∑
α,β=1

Fu,αC(u)−1
αβ(Fu,α · S) ∈ NS(E)Q, (8.21)
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whose image (by construction) is contained in the essential subspace (cfr. Definition 11)

ΛQ ⊂ E8 ⊗Q ⊂ NS(E)Q. (8.22)

In eqn.(8.21) C(u)αβ is the Cartan matrix of the ADE root system R(Fu), cfr. table 4.

The map ΦQ induces on MW(E)/MW(E)tors a Q-valued positive-definite symmetric pairing,

called the Néron-Tate pairing

〈S1, S2〉NT = 〈ΦQ(S1),ΦQ(S2)〉E8⊗Q ∈ Q. (8.23)

The corresponding quadratic form S 7→ h(S) ≡ 〈S, S〉NT is known as the Néron-Tate (or canonical)

height. In terms of the intersection pairing · we have [221]

〈S1, S2〉NT = 1 + S1 · S0 + S2 · S0 − S1 · S2 −
∑

m(Fu)>1

C(u)−1
αβ (Fuα · S1)(Fuβ · S2) ∈ 1

m
Z (8.24)

where m = lcm(m(Fu)(1))). MW(E)/MW(E)tors equipped with the Néron-Tate pairing is called the

Mordell-Weil lattice [221].

Remark 8.2.2. From the facts that KE = −F and S2 = −χ(E) = −1, we see that all sections S

are, in particular, (rational) (−1)-curves.

The narrow Mordell-Weil group. There is an important finite-index torsion-free subgroup

of MW(E), the narrow Mordell-Weil group, MW(E)0, consisting of the sections which at all reducible

fibers intersect the same component Fu,0 as S0, so that the sum in the rhs of eqn.(8.21) vanishes.

The sum in eqn.(8.24) also vanishes if either S1 or S2 is narrow. Thus the Néron-Tate pairing is

Z-valued when restricted to MW(E)0. More generally, the pairing of a section in MW(E)0 with any

section in MW(E) is an integer. Indeed one has the isomorphisms of lattices [221]

MW(E)0 ∼= Λ, MW(E)/MW(E)tors
∼= Λ∨. (8.25)

One shows that MW(E)0 = ker γ [191].

Integral sections. Given a (fixed) particular model of an elliptic curve E/k over a number

field k, say an explicit curve in A2
k, we may consider, besides the points which are “rational” over

k, also the points which are “integral” over k, that is, whose coordinates belong to the Dedekind

domain Ok of algebraic integers in k. While the “rational” points of E/k form a (typically infinite)

finitely-generated group, its “integral” points form a finite set (Siegel theorem [235]).

The integer ring OC(u) of the rational function field C(u) is, of course, the Dedekind domain

of polynomials in u, C[u]. The analogy with Siegel theorem in Number Theory suggests to look

for sections given by polynomials. Of course, “integrality” is a model-dependent statement. If we

focus on the elliptic curves over the rational field C(u) which are relevant for Special Geometry,

and describe them through their minimal Weierstrass model, y2 = x3 + a(u)x + b(u), the correct

statement is that the integral sections are the ones of the form (x, y) = (p(t), q(t)) where p(t) (resp.

q(t)) is a polynomial of degree at most 2 (resp. 3) [221].
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From the vantage point of the Kodaira-Néron model the notion of integral section becomes

simpler:

Definition 12. A section S ∈ MW(E) is said to be integral if it does not intersect the zero section,

i.e. S · S0 = 0.

Siegel theorem still holds [221]:

Proposition 8.2.1. E a (relatively minimal) rational elliptic surface. There are only finitely many

integral sections (at most 240) and they generate the full Mordell-Weil group.

Indeed, from eqn.(8.24) we see that if S is integral

h(S) = 〈S, S〉NT = 2−
∑
u,α

C(Fu)−1
α,α (Fu,α · S),≤ 2 (8.26)

so that all integral sections have square-norms ≤ 2. Since there are only finitely many such elements

in the lattice Λ∨ and the torsion subgroup ⊆ Λ∨/Λ is finite, the statement follows.

Lemma 8.2.1. If S ∈ MW(E) satisfies any two of the following three conditions, it also satisfies

the third one:

1) S is narrow: S ∈ MW(E)0;

2) S is integral: S · S0 = 0;

3) S has Néron-Tate height 2: h(S) = 2.

Proof. From eqn.(8.24), the narrow condition implies h(S) = 2 + 2S · S0 ≥ 2 with equality if and

only if S ·S0 = 0. From eqn.(8.26) the integral condition implies h(S) ≤ 2 with equality if and only

if S is narrow.

The following observation is crucial:

Proposition 8.2.2. π : E → P1 a (relatively minimal) rational elliptic surface. Let S be an integral

section of π. Then the divisor

C = S − S0 − F (8.27)

is an E8-root curve.

Proof. We have to check the three conditions in eqn.(8.13)

F · (S − S0 − F ) = 0, S0(S − S0 − F ) = S0 · S = 0,

(S − S0 − F )2 = −2− 2S · S0 = −2.
(8.28)

So C is an actual rational curve on the surface E which represents in NS(E) a root of the lattice E−8
(cfr. eqn.(8.5)).

Note that to an integral section there are associated both a (−1)-curve S and an E8-root

(−2)-curve C. If, in addition, S is narrow,

Fu,α · C = 0 for all u, α. (8.29)
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We say that an E8-root curve is in good position in the Néron-Severi lattice if it satisfies eqn.(8.29).

E8-root curves in good position are in one-to-one correspondence with the integral-narrow sections

of π.

8.3 Arithmetics of SW differentials

We return to the study of rank-1 special geometries and their SW differentials.

8.3.1 The “no dangerous irrelevant operator” property

Let us consider a special geometry X0 = E0 \ F∞ described by a certain rational function J0

consistent with a given fiber configuration {F∞;Fi}. From eqn.(8.2) and the discussion following

it, we see that X0 carries a symplectic form Ω0 such that (in cohomology)

[Ω0] ∈ ΛC ≡ Λ⊗ C. (8.30)

Now let us slightly deform the rational function J = J0 + δJ , in a way consistent with the

given fiber configuration {F∞;Fi}, while keeping fixed the fiber at infinity (i.e. the asymptotic

geometry as u→∞, see discussion around eqn.(7.37)). Since we keep fixed the UV geometry, the

deformation X0 → X should correspond to a small change of masses and relevant couplings.

The deformed manifold X is smoothly equivalent to X0; so we may identify the cohomology

groups H2(X,C) ∼= H2(X0,C) and compare the symplectic forms in cohomology [104]. The vari-

ation δ[Ω] = [Ω] − [Ω0] computes the modification of the masses induced by the variation δJ of

Kodaira’s functional invariant. Eqn.(8.30) identifies the space of mass parameters with a subspace

of the essential vector space ΛC.

It is natural to require our geometry to have “enough” mass deformations (or equivalently

“enough” SW differentials) to span all ΛC, that is, to require that no mass deformation is forbidden

or obstructed. This requirement formalizes the physical idea that we are probing all genuine IR

deformations of our QFT, and not arbitrarily restricting the parameters to some special locus in

coupling space. We call this condition SW completeness. The main goal of this subsection is to

show the following

Claim. In rank-1, SW completeness implies the property “no dangerous irrelevant operators” con-

jectured in refs. [19–23].

Proof. The statement of SW completeness says that the total number n of deformation of an

UV complete geometry should be equal to the dimension of the space ΛC plus the number of

relevant/marginal operators. In formulae

n− dim ΛC =

{
1 if ∆ ≤ 2

0 otherwise.
(8.31)

From eqn.(7.26)

dim ΛC = 8−
∑
u

rankR(Fu) = 8−
∑
u

e(Fu) + s+ 2a◦ + 2a∗ = s+ 2a◦ + 2a∗ − 4. (8.32)

76



while, from eqn.(7.22),

n = s+ a◦ + 2a∗ − 3, (8.33)

so that the lhs of eqn.(8.31) is simply

1− a◦ (8.34)

from which we see that a◦ = 1 if ∆ > 2 and a◦ = 0 otherwise.

Comparing with §.7.3 we get

Fact. In a non-constant, UV and SW complete, rank-1 special geometry, an additive◦ fiber (i.e.

types II, III, and IV ) may be present in E only as the fiber at infinity F∞. In this case the N = 2

QFT is a mass-deformation of a SCFT with ∆ = 6, 4 and 3, respectively.

This statement has identical implications for the classification program (in rank-1) as the “no

dangerous irrelevant operator” conjecture of ref. [19–23].

8.3.2 The flavor lattice (elementary considerations)

In the previous subsection we have identified ΛC with the complexification hC = h⊗C of the flavor

Cartan sub-algebra h ⊂ f. The dimensions of the two spaces agree for SW complete geometries.

Inside the Cartan algebra h we have natural lattices, such as the weight and roots lattices of

f. These lattices are endowed with a positive-definite symmetric pairing with respect to which the

Weyl group Weyl(f) acts by isometries. Moreover, in h we may distinguish finitely many vectors

playing special roles, such as the co-roots, the roots, and the fundamental weights.

In order for the identification ΛC ↔ hC to be fully natural, the above discrete structures should

be identifiable in ΛC too. In ΛC there exist canonical lattices, like Λ, Λ∨ and their sub- and

over-lattices, as well as a natural positive-definite symmetric pairing, i.e. the Néron-Tate height

〈−,−〉NT. These lattices also contains a special finite sub-set, namely the integral sections.

In particular, to a given fiber configuration {Fu}u∈U we may associate the group O(MW(E)0)

of isometries of the narrow Mordell-Weil lattice MW(E)0. Then, consistency yields

Necessary condition. Let f be the flavor Lie algebra associated to a rank-1 (UV and SW complete)

special geometry, and let Weyl(f) be its Weyl group. Then

Weyl(f) ⊆ O(MW(E)0). (8.35)

This condition does not fix f uniquely. For instance, let MW(E)0 ∼= D4, so that

O(MW(E)0) ∼= Weyl(D4) oS3, (8.36)

where the symmetric group S3 acts by Spin(8) triality. Then O(MW(E)0) ∼= Weyl(F4), while

the subgroup Weyl(D4) o Z/2Z is isomorphic to Weyl(C4) ∼= Weyl(B4), so in this case the above

condition leaves us with 4 possible irreducible f, namely B4, C4, D4 and F4, and a few more

reducible candidates.

In order to unfold the ambiguity, we need to understand the flavor root system and not just

its root lattice. This issue will be discussed in the next subsection. The obvious guess is that the

finite set of integral sections will play the major role.
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F∞ II III IV I∗0 II∗ III∗ IV ∗ I∗1 I∗2

R(F∞) - A1 A2 D4 E8 E7 E6 D5 D6

MW(E)0 ≡ Λ E8 E7 E6 D4 - A1 A2 A3 A1 ⊕A1

δ(F∞) 0 1
2

2
3 1 2 3

2
4
3 1, 5

4 1, 3
2

integral repr. - 56 27⊕ 27 8c ⊕ 8s ⊕ 8c - 2 3⊕ 3 6⊕ 4⊕ 4 4⊕ 2L ⊕ 2R

Table 7: Flavor symmetries and integral representations for “general” deformations. Note that in
the non-semisimple cases δ(F∞) takes two distinct values (cfr. [221] page 124). For I∗b≤2 the integral
representation is given by vector ⊕ spinorL ⊕ spinorR of SO(8− 2b).

In simple situations the correct physical flavor symmetry may be easily guessed from the narrow

Mordell-Weil lattice MW(E)0. However, in general, one needs the precise treatment in terms of

roots systems described in the next subsection. Here we present the simplest possibile situation

(i.e. maximal symmetry for the given ∆) where naive ideas suffice.

Example 11 (Maximal flavor symmetry). Let us consider fiber configurations of the form {F∞; I
12−e(F∞)
1 }

where F∞ is one of the 7 semi-simple additive fibers in eqn.(7.33) or I∗b≤4 in the asymptotic-free case.

These configurations are the “general deformations” of the SCFT associated to the given fiber at

infinity, in the sense that they yield the family of elliptic surfaces depending on the largest number

of parameters. Thus {F∞; I
12−e(F∞)
1 } is the configuration which, for a given Coulomb dimension ∆

(encoded in F∞), maximizes the rank of the flavor group, see eqn.(8.32). In this case all fibers are

irreducible except (possibly) the fiber at infinity. The Mordell-Weil group is torsionless [221] and

thus

MS(E) ∼= (MS(E)0)∨ ≡ Λ∨. (8.37)

Standard facts about lattices [221] yield

Lemma 8.3.1. Let F∞ be one of the 7 semi-simple additive fiber types in eqn.(7.32) or I∗b≤2

and R(F∞) the corresponding ADE root system (table 4). Let Λ = R(F∞)⊥ be its orthogonal

complement in the E8 lattice (i.e. the essential lattice). Then Λ is an irreducible root lattice of

type ADE, except for F∞ = I∗2 where Λ is the root lattice of so(4) = A1 ⊕ A1. (Λ∨ is then the

corresponding ADE weight lattice). See table 7. Moreover,

MS(E)/MS(E)0 ≡ Λ∨
/

Λ = R(F∞)∨
/
R(F∞) ≡ Z(F∞) ≡ Z(E), (8.38)

is the center of the corresponding (simply-connected) ADE Lie group.

Remark 8.3.1. Note that for {F∞; I
12−e(F∞)
1 } adding/deleting ∗ on the fiber at ∞ simply inter-

changes the two orthogonal sub-lattices R(F∞)↔ MW(E)0.

In the {F∞; I
12−e(F∞)
1 } case, for all sections S ∈ MW(E)

h(S) ≡ 〈S, S〉NT = 2 + 2S · S0 −

{
0 if S ∈ MW(E)0

δ(F∞) if S 6∈ MW(E)0
(8.39)

78



see table 7. For F∞ = II, MW(E)0 ≡ MW(E), so the second case in (8.39) does not appear.

The roots of the ADE lattice MW(E)0 are narrow of height 2 hence integral sections by Lemma

8.2.1 which are related to E8-root curves by Proposition 8.2.2. Being narrow, they are auto-

matically in good position. It is known that the flavor Lie algebra f ≡ Lie(F) of the “maximally

symmetric” models is the simply-laced Lie algebra MW(E)0. Thus the roots of the flavor algebra

simply correspond to the E8-root curves in good position for the fiber configuration {F∞; I
12−e(F∞)
1 }.

The Mordell-Weil group MW(E) is the weight lattice of the Lie algebra in the third row of table

7, and the integral sections which are not ADE roots form the weights of the representation in the

last row of the table. These sections correspond to (−2)-curves which are not in good position.

They form a Weyl invariant set of weights. Note that the ‘integral representation’ of F in the last

row of the table is precisely the one carried by the BPS hypermultiplets which are stable in the

regime u→∞. For instance, for {I∗b , I
6−b
1 }, which corresponds to SU(2) SQCD with Nf = 4− b,

we get F = SO(2Nf ) and the hypers (quarks, monopoles, and dyons [223,224]) belong to the vector

and left/right spinor representations.

Example 12. In Example 11 we excluded two possible fibers at ∞, I∗4 and I∗3 . The first one,

which corresponds to pure SYM, has a flavor group of rank 0. The second one, i.e. SU(2) SQCD

with Nf = 1 (cfr. §. 7.3), has a flavor group of rank 1. However, in this case the flavor group is

not semi-simple, but rather the Abelian group SO(2) (baryon number) which does not correspond

to a root system. Correspondingly, in this instance the essential lattice is not a root lattice but

rather [221]

Λ = 〈4〉, MW(E) ≡ Λ∨ = 〈1/4〉, (8.40)

where 〈`〉 stands for the group Z endowed with the quadratic form h(n) = ` n2. One has δ(I∗3 ) = 1,

or 7
4 , so that the integral sections correspond to the elements of 〈1/4〉 having height 1 or 1

4 . They

correspond to U(1) ∼= SO(2) baryon charges ±1 and ±1
2 , which are the correct values for quarks

and, respectively, dyons in Nf = 1 SQCD.

8.4 The flavor root system

8.4.1 The root system associated to the Mordell-Weil lattice

The Mordell-Weil lattices contain a canonical root system that we now define.

As reviewed above, for a rational elliptic surface E we have

MW(E)0 ⊂ MW(E)/MW(E)tors. ⊂ NS(E)−Q

‖ ‖ ‖

Λ ⊂ Λ∨ ⊂ UQ ⊕ (E8 ⊗Q)

(8.41)

Λ, Λ∨ being equipped with the Néron-Tate pairing and NS(E)−Q with minus the intersection pairing.

The embeddings in (8.41) are isometries. We consider the sublattice of “integral points” in Λ∨

ΛZ := Λ∨ ∩ NS(E)− ⊂ Λ∨. (8.42)

A vector s ∈ ΛZ, being an element of NS(E)−, defines a divisor D(s) unique up to linear equivalence.

An element λ ∈ Λ∨ defines a section S(λ) unique up to torsion.
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The level of s ∈ ΛZ is the largest positive integer k(s) such that

ŝ ≡ 1

k(s)
s ∈ Λ∨. (8.43)

We have,

〈s, s〉NT = k(s)2 h(ŝ) ∀ s ∈ ΛZ (8.44)

〈λ, s〉NT = k(s) 〈λ, ŝ〉NS = −S(λ) ·D(s) ∈ Z ∀ s ∈ ΛZ, λ ∈ Λ∨, (8.45)

In particular, ΛZ ⊂ Λ.

Definition 13. The MW root system Ξ ⊂ ΛZ is the set of elements s ∈ ΛZ such that

h(s)/k(s) ≡ k(s) h(ŝ) = 2 ⇒ 〈s, s〉NT = 2 k(s). (8.46)

For each s ∈ Ξ we consider the reflection

rs : λ 7→ λ− 2〈λ, s〉NT

〈s, s〉NT
s. (8.47)

Lemma 8.4.1. Let s ∈ Ξ. The reflection rs:

1) is an isometry of Λ∨;

2) preserves the lattice ΛZ;

3) preserves the level k(s′) of s′ ∈ ΛZ.

Proof. 1) It suffice to show that rs(λ) is a linear combination of elements of Λ∨ with integral

coefficients. For all s ∈ Ξ and λ ∈ Λ∨,

2〈λ, s〉NT

〈s, s〉NT
s =

2〈λ, s〉NT

2 k(s)
k(s) ŝ = −S(λ) ·D(s) ŝ. (8.48)

2) We have to show that
2〈s′, s〉NT

〈s, s〉NT
∈ Z for all s ∈ Ξ, s′ ∈ ΛZ. (8.49)

Now
2〈s′, s〉NT

〈s, s〉NT
=

2k(s)〈s′, ŝ〉NT

2k(s)
= −D(s′) · S(ŝ) ∈ Z (8.50)

3) Indeed, rs(s
′) = k(s′) rs(ŝ

′) where rs(ŝ
′) ∈ Λ∨ by 1).

From this Lemma it follows that the finite set Ξ is a reduced root system canonically associated

to the Mordell-Weil group.

The restricted root system of (E , F∞). In our set-up, we have a marked additive fiber

F∞ ∈ E . We consider the subset of Ξ∞ ⊂ Ξ such that

s ∈ Ξ∞ ⇐⇒ s ∈ Ξ and S(ŝ) crosses F∞ in the identity component. (8.51)
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From (8.47) we see that Ξ∞ is also a root system. Indeed, for all s ∈ Ξ∞, s′ ∈ Ξ and α ≥ 1,

F∞,α · S(rs(ŝ
′)) = F∞,α · S(ŝ′)− 〈ŝ′, s〉NT F∞,α · S(ŝ) ≡ F∞,α · S(ŝ′). (8.52)

Explicit formulae for divisors. Let s ∈ ΛZ be an element of level k(s), and write Ŝ for

S(ŝ). Then the D(s), S(s) are the divisors

D(s) = k(s) ΦQ(Ŝ) ∈ ΛZ ⊂ NS(E) (8.53)

S(s) = k(s)
(
ΦQ(Ŝ) + F ) + S0 ∈ NS(E). (8.54)

S(s) is an exceptional (-1)-curve, i.e. KE · S(s) = S(s)2 = −1, namely a section.

Remark 8.4.1. All s ∈ Λ∨ ∼= MW(E)/MW(E)tor corresponding to narrow-integral sections are

elements of Ξ∞ corresponding to “short” roots (height = 2). Conversely, all roots of height 2 arise

from narrow-integral sections. Let Ŝ be a non-narrow integral section which is narrow at ∞, and

k(Ŝ) the smallest integer such that k(Ŝ) Ŝ ∈ Λ. If Ŝ satisfies the criterion

k(Ŝ) h(Ŝ) = 2, (8.55)

then k(Ŝ) Ŝ ∈ Ξ∞.

Remark 8.4.2. We have rank Ξ∞ ≤ rank Λ. When the inequality is strict, F has an Abelian factor

U(1)a with a = rank Λ− rank Ξ∞, cfr. Example 12.

8.4.2 SW differentials and flavor

In §. 8.3.2 we considered the polar divisor of λ up to algebraic (or linear) equivalence. In doing this

we lost some information about the actual curves Si ⊂ E along which the SW differential λ has

poles. We know that these curves must be sections of π : E → P1, i.e. F · Si = 1. We may take one

of the Si, say S0 as the zero section S0 ≡ S0. The divisors dual to the free mass parameters (cfr.

eqn.(8.2)) then take the form La ∼ Sa − S0 for a > 0. The La should be trivial at infinity (since

the masses are UV irrelevant), that is, the sections Si should cross F∞ in the identity component67,

F∞,α · Si = δα,0. Eqn.(8.3) yields

i) La ≡ Sa − S0 ∈ ΛZ ⊕ ZF, ii) F∞,α · (La + S0) = 0 α ≥ 1. (8.56)

We have to determine the sections Si (equivalently, the divisors La satisfying i) and ii)), which

may actually appear in the polar divisor of λ. From comparison with E8 Minahan-Nemeshanski we

know that La is allowed to be an E8-root (−2)-curve. Note that eqn.(8.56) enforces the condition

that La is in good position. If La is a E8-root satisfying (8.56), the associated (−1)-curve Sa is an

integral-narrow section hence an element of Ξ∞ of height 2.

However the integral-narrow sections cannot be the full story, since the set of integral-narrow

sections does not behave properly under covering maps (discrete gaugings in the QFT language).

In the next section we shall discuss the functorial properties of the Mordell-Weil lattices under

such coverings. There it will be shown that a natural finite set of sections which contains the

67 We call such sections narrow at ∞.
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∆ 6 4 3 2

F∞ II III IV I∗0

R A3 A3 ⊕A1 A3 ⊕A2 A3 ⊕D4

MW(E)0 D5 A3 ⊕A1 (D5 : A2) 〈4〉
MW(E) D∨5 A∨3 ⊕A∨1 (D5 : A2)∨ 〈1/4〉 ⊕ Z/2Z

Table 8: Lattices for fibers {F∞; I4, I
8−e(F∞)
1 }. (D5 : A2) stands for the orthogonal complement

of the lattice A2 in D5 (it cannot be written as a direct sum of root and rank 1 lattices). The
Mordell-Weil groups are read from the table attached to Theorem 8.7 of [221].

integral-narrow ones and behaves well under covering maps is the set Ξ defined in §. 8.4.1. As we

have seen, Ξ is automatically a root system in ΛR. The condition (8.56) restricts further to the

subsystem Ξ∞. Therefore consistency leaves us with just one possible conclusion:

The root system of the flavor Lie group F is Ξ∞.

This statement is checked in §.8.4.3 in (essentially all) examples.

Remark 8.4.3 (Abelian flavor symmetries). The general situation is similar to SU(2) SQCD with

Nf = 1. In that model the rank of the flavor Lie algebra is 1, but the set of roots is empty since: i)

by definition, in {I∗3 , I3
1} there are no non-narrow sections which are narrow at ∞, and ii) Λ = 〈4〉

so no narrow section is integral. This is the correct result for a U(1) flavor symmetry. On the other

hand, the integral section which are not narrow at ∞ give baryon numbers of BPS states as we

commented in Example 12.

Remark 8.4.4 (Maximal symmetry again). In the configuration {F∞, I12−e(F∞)
1 }, all sections

narrow at ∞ are narrow. So the roots are just the elements of Λ which have height 2, and the root

system is the unique simply-laced one with root lattice Λ, see third row of table 7.

8.4.3 More examples of flavor root systems

Example 13 (Fiber configurations {F∞; I4, I
8−e(F∞)
1 }). We assume the presence of a single semi-

stable fiber of type I4. This restricts the additive fiber at ∞ to 4 possible types as in table 8.

For F∞ = II and III the narrow Mordell-Weil groups are the root lattices MW(E)0 = D5 and

A3 ⊕A1, respectively, and the full Mordell-Weil group is the corresponding weight lattice. The 40

roots of D5 (resp. 14 roots of A3 ⊕ A1) correspond to narrow-integral sections and are roots of f.

An integral68 non-narrow section S has Néron-Tate height

h(S) = 2− δ(I4) =

{
1 k(S) = 2

5/4 k(S) = 4,
(8.57)

and the criterion (8.55) is satisfied only by the sections of height 1 which have square-length 4. For

F∞ = II there are 10 such roots of square-length 4, one for each vector weight in D∨5 . For F∞ = III

there are 6 of them in correspondence with the vector weights of A3
∼= so(6). We conclude:

68 A non-integral section has height ≥ 3.
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• The flavor Lie algebra of {II; I4, I
6
1} has a root system consisting of 40 roots of square-length

2 and 10 roots of square-length 4, and a Weyl group Weyl(D5)oZ/2Z. The special geometry

describes a ∆ = 6 SCFT with flavor group (isogeneous to) Sp(10);

• The flavor Lie algebra of {III; I4, I
6
1} has a root system consisting of 14 roots of square-length

2 and 6 roots of square-length 4, and a Weyl group (Weyl(A3) o Z/2Z) ×Weyl(A2). The

geometry describes a ∆ = 4 SCFT with flavor group (isogeneous to) Sp(6)× Sp(2).

If F∞ = I∗0 , R = A3 ⊕D4, and Λ = 〈4〉. There are no integral narrow sections, and the roots are

in one-to-one correspondence with the elements of the Mordell-Weil group of Néron-Tate height 1.

We conclude:

• {I∗0 ; I4, I
2
1} describes a ∆ = 2 SCFT with F = Sp(2), namely SU(2) N = 2∗.

If F∞ = IV , the narrow Mordell-Weil and the full Mordell-Weil groups are rank 3 dual lattices

Λ, Λ∨ with respective Gram matrices [221]
2 0 −1

0 2 −1

−1 −1 4

 1

12


7 1 2

1 7 2

2 2 4

 (8.58)

Short roots are in one-to-one correspondence with elements of the first lattice of Néron-Tate height

2 while long roots are in correspondence with elements of the second lattice with height 1. There

are 4 short roots [±1, 0, 0], [0,±1, 0] ∈ Λ and 4 long roots [ε1, ε2,−(ε1 + ε2)/2] ∈ Λ∨, (ε1, ε2 = ±1)

making the root system of Sp(4). Since the flavor group has rank 3, and there is no root associated

to the last component of the Cartan subalgebra, we conclude that F has an Abelian factor (compare

Remark 8.4.3). Then

• {IV ; I4, I
4
1} describes a ∆ = 3 SCFT with F = Sp(4)× U(1).

Example 14 (The configuration {II; IV ∗, I2
1}). In this case R = E6 (table 4), Λ = A2 and

MW(E) = A∨2 . The 6 roots of A2 yield short roots of the flavor algebra f. Let us consider the roots

arising from the integral non-narrow sections. An integral non-narrow section S has Néron-Tate

height (cfr. table 7)

h(S) = 2− δ(IV ∗) =
2

3
and k(S) = 3. (8.59)

The criterion (8.55) is satisfied, and the integral non-narrow sections correspond to long roots of

square-length 2 · 3 = 6. The long roots are then in 1-to-1 correspondence with the elements of

height 2
3 in A∨2 , whose number is 6. The 6 roots of square-length 2 together with the 6 roots of

square-length 6 form the root system of G2. Therefore

• {II; IV ∗, I2
1} describes a ∆ = 6 SCFT with F = G2.

Example 15 (The configuration {II; I∗0 , I
4
1}). In this case R = D4 (table 4), Λ = D4 and MW(E) =

D∨4 . The 24 roots of D4 yield short roots of the flavor algebra f of square-length 2. The integral

non-narrow sections S have Néron-Tate height (cfr. table 7)

h(S) = 2− δ(I∗0 ) = 1, and k(S) = 2, (8.60)
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and correspond to long roots in correspondence with the 24 elements of the lattice D∨4 of height 1.

We have 24 short roots of height 2 and 24 long roots of height 4; thus

• {II; I∗0 , I
4
1} describes a ∆ = 6 SCFT with F = F4.

Example 16 (The configuration {II; I∗1 , I
3
1}). In this case R = D5 (table 4), Λ = A3 and MW(E) =

A∨3 . The 12 roots of A3 yield short roots of the flavor algebra f of square-length 2. An integral

non-narrow section S has Néron-Tate height

h(S) = 2− δ(I∗1 ) =

{
1 k(S) = 2

3/4 k(S) = 4,
(8.61)

corresponding, respectively, to the vector and spinor representations of so(6) ∼= A3. The first line

satisfies (8.55) and lead to 6 long roots of square-norm 4. Then

• {II; I∗1 , I
3
1} describes a ∆ = 6 SCFT with F = Sp(6).

Example 17 (The configuration {II; I2
4 , I

2
1}). In this case R = A3⊕A3. This is a subtle case since

two distinct Mordell-Weil lattices may be realized [221] (cfr. eqn.(7.29))

1) Λ = A1 ⊕A1 MW(E) = Λ∨ ⊕ Z/2Z (8.62)

2) Λ = 〈4〉 ⊕ 〈4〉 MW(E) = Λ∨. (8.63)

Let us consider the two possibilities in turn.

1) We have 4 square-length 2 roots from the integral-narrow sections. The non-narrow sections have

k(S) = 2. We have the 4 roots of square-length 4 associated to the elements (±1
2 ,±

1
2) ∈ A∨1 ⊕A∨1 .

In total we get the root system of Sp(4).

2) There are no roots from the narrow sections. An integral section S which is narrow at one of

the two I4 fibers has Néron-Tate height

h(S) = 2− δ(I4) =

{
1 k(S) = 2

5/4 k(S) = 4,
(8.64)

and those which are narrow at both

h(S) = 1− δ(I4)− δ(I4)′ =

{
1/4 k(S) = 4

1/2 k(S) = 4.
(8.65)

The criterion (8.55) is satisfied by the sections of Néron-Tate height 1 which have square-length 4

(there are 4 of them), and by those of height 1/2 which have square-length 8 (other 4). Rescaling

the length by a factor 1/
√

2, we recognize again the root system of Sp(4). Thus

• {II; I2
4 , I

2
1} describes a ∆ = 6 SCFT with F = Sp(4). However, it looks like we have two

distinct theories with these properties.

Example 18 (The configuration {II; I∗2 , I
2
1}). In this case we have R = D6, Λ = A1 ⊕ A1 and

Λ∨ = A∨1 ⊕A∨1 ∼= so(4). The 4 roots of Λ are roots of square-length 2 while the integral sections in

the 4 of so(4) give roots of square-lenght 4.
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• {II; I∗2 , I
2
1} describes a ∆ = 6 SCFT with F = Sp(4).

Example 19 ({II; I∗1 , I3}). R = D5 ⊕ A2 and Λ = 〈12〉, MW(E) = 〈1/12〉. The 2 sections with

h = 1/3 have k(S) = 6 so are roots of square-length 12 = 4(
√

3)2.

• {II; I∗1 , I3} describes a ∆ = 6 SCFT with F = Sp(2).

Example 20 ({II; I2, IV
∗}). R = E6 ⊕ A1 and Λ = 〈6〉, MW(E) = 〈1/6〉. The 2 integral section

with h(S) = 2/3 have k(S) = 3 and hence are roots of square-length 3 ·2 = 6. Rescaling the length,

we get the root system of F = Sp(2), but it looks like a specialization of the G2 model.

Example 21 ({II; I1, I
∗
3}). R = D7 and Λ = 〈4〉, MW = 〈1/4〉. The 2 sections with h(S) = 1 have

k(S) = 2 and we get a Sp(2) flavor group.

Example 22 ({II; I4, I
2
2 , I

2
1}). R = A3 ⊕ A1 ⊕ A1 and Λ = A3, MW = A∨3 ⊕ Z/2Z. We have 12

roots of length 2 from the narrow sections, and 6 roots of length 4.

• {II; I4, I
2
2 , I

2
1} describes a ∆ = 6 SCFT with F = Sp(6).

Example 23 ({III; I∗0 , I
3
1}). Here R = A1⊕D4, Λ = A1⊕A1⊕A1. We have the 6 roots of the Λ

and the 3× 4 vectors of the three A1⊗A1 subalgebras. The flavor algebra has 6 short and 12 long

roots hence

• {III; I∗0 , I
3
1} describes a ∆ = 4 SCFT with F = Spin(7).

Example 24 ({III; I∗1 , I
2
1}). Here R = A1⊕D5, Λ = A1⊕〈4〉. We have the 2 roots of A1 and the

2 sections h(S) = 1 with k(S). The two sets of roots are orthogonal69

• {III; I∗1 , I
2
1} describes a ∆ = 4 SCFT with F = SU(2)× Sp(2).

Example 25 ({IV ; I∗0 , I
2
1}). R = D4⊕A2, Λ = A2[2] and MS(E) = A∨2 [1/2]. There are no narrow-

integral sections. The integral sections which are narrow at ∞ correspond to the image of the A2

roots in A∨2 [1/2] which have h(S) = 1 and k(S) = 2, so they are flavor roots and form a A2 system.

• {IV ; I∗0 , I
2
1} describes a ∆ = 3 SCFT with F = SU(3).

Example 26 ({II; III∗, I1}). In this case R = E7, Λ = A1 and MS(E) = A∨1 . We have two roots

from the two narrow-integral sections. Non narrow integral sections have height 1/2 and level 2,

so they do not produce any new root and F = SU(2).

8.5 Classification

The moduli space of the rational elliptic surfaces is connected; thus all geometries with a given

fiber at infinity F∞ may be obtained as degenerate limits of the “maximally symmetric” geometry

{F∞, I12−e(F∞)
1 }. It is thus important to have a criterion to establish when a geometry should be

considered just a special case or limit of a previous one, in which we have simply frozen some mass

deformation, and when it corresponds to a “new” geometry describing a different N = 2 QFT.

A reasonable criterion is that we have a distinct geometry along a sub-locus M′ ⊂ M in moduli

69 Of course SU(2) ∼= Sp(2); however we use write the two factor groups in different ways to emphasize the different
role of the two symmetries in the Mordell-Weil group.
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space whenever along M′ there are exceptional (−1)-curves associated to flavor roots which are

not present away from M′. In other words, “new theories” with the same ∆ correspond to loci of

enhanced symmetry.

Example 27. Let us consider the family of fiber configurations {II; Ib, I
10−b
1 }, of special geometries

with ∆ = 6. We have

b 1 2 3 4 5 6 7 8 9

R − A1 A2 A3 A4 A5 A6 A7 A8

Λ E8 E7 E6 D5 D4 A3 ∗ 〈8〉 0

A new (-1)-curve with the needed properties arises at b = 4 where the “unbroken” subgroup

SO(10) ⊂ E6 get enhanced to Sp(10) 6⊂ E6. Then b = 5, 6 return to the subgroup symmetry and

7 and 8 to groups like SU(2)× U(1) and U(1).

The evidence suggests that the above geometric criterion in terms of (−1) curves produces

roughly the same restrictions as the physically motivated “Dirac quantization constraint” used by

the authors of ref. [19–23]. In fact, the geometric criterion is slightly weaker than the physical one,

and this aspect deserves further investigation.

The pattern emerging from the “arithmetic” perspective of the present thesis then essentially

agrees with the more direct methods of [19–23].

9 Base change and discrete gaugings

In ref. [23] the non-simply-laced flavor symmetries are understood as a result of the gauging of

a discrete symmetry in a parent N = 2 theory. In the arithmetic language this translates into

functorial properties under base change [167,191,221]. In Diophantine terms, ungauging the discrete

symmetry means passing from the original special geometry (seen as an elliptic curve E over the field

K = C(u)) to the special geometry described by the elliptic curve E′, defined over a finite-degree

extension K ′ of K. E′ is given by the fibered product

E′ := E ⊗KK ′. (9.1)

K ′ is the function field of some curve C, and the extension from C(u) to K ′ arises from a morphisms

f : C → P1. The Kodaira-Néron model of E′ is an elliptic surface π : E ′ → C. For our purposes we

are interested in the case C = P1.

Given a rational map f : P1 → P1 and a rational elliptic surface π : E → P1 with section, we

may pull-back the elliptic fibration through f producing a new elliptic surface with section, f∗E ,

not necessarily rational, on which the deck group of f acts by automorphisms.

Suppose our relatively minimal rational elliptic surface E has an automorphism α : E → E which

induces the automorphism τ : P1 → P1 on its base. If ord(α) = ord(τ) = n, E is the pull-back of

another relatively minimal rational elliptic surface E ′ via the map

fn : z → zn ≡ u (9.2)
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deg f 5 4 3 2 2 2

F
(1)
∞ II II II II III IV

F
(2)
∞ II∗ IV ∗ I∗0 IV I∗0 IV ∗

Table 9: Possible fibers at infinity in UV complete base changes.

(we locate the fixed points of τ at 0 and ∞), see Theorem 5.1.1 of [156].

In the physical terminology, E ′ is the rational elliptic surface which describes the special geom-

etry of the QFT obtained by gauging a discrete symmetry Zn of the parent QFT associated to E .

Table (VI.4.1) of [191] yields the change in fiber type under arbitrary local base changes. Table 6

of [156] lists all possible rational elliptic surfaces which can be obtained as the pull-back of another

rational elliptic surface. However not all such coverings are meaningful QFT gaugings, since, in

addition, we need to impose UV and SW completeness on the geometries70.

UV and SW completeness. Let f : z 7→ zn be a cover inducing a discrete gauging of the

special geometry E(1). The functional invariants of the two geometries E(1) and E(2) = f∗E(1)

are simply related: J (2) = f∗J (1). From this relation we read the change in fiber types which

affects only the fibers F0 and F∞ over the branching points of f in agreement with the local rules

of [191]. Semi-simplicity is preserved by base change. Since u is the Coulomb branch coordinate,

UV completeness requires

∆(F (1)
∞ ) = deg f ·∆(F (2)

∞ ). (9.3)

For deg f > 1 we have only three possibilities F
(1)
∞ = II, III, IV . This yields the restrictions in

table 9 which should be supplemented by the conditions arising from SW completeness. Comparing

with table 5 of [156] we see that the configurations satisfying the criterion are71:

• in degree 5 none;

• in degree 4 the single cover {IV ∗; I4
1} → {II; III∗, I1};

• in degree 3 the single cover {I∗0 ; I6
1} → {II; IV ∗, I2

1};

• in degree 2 with F
(1)
∞ = II there are seven pairs which include as covered surface the types

{II; I∗0 , I
4
1}, {II; I∗1 , I

3
1}, {II; I∗1 , I3}, {II; I∗2 , I

2
1}, {II; I∗3 , I1};

• in degree 2 with F
(1)
∞ = III five pairs which include as covered surface the types {III; I∗0 , I

3
1},

{III; I∗1 , I
2
1}, {III; I∗1 , I2}, {II; I∗2 , I1};

• in degree 2 with F
(1)
∞ = IV a single cover72 with {IV ∗, I4

1} → {IV ; I∗0 , I
2
1}.

70 And possibly “Dirac quantization”.
71 For brevity we list only the covered types which satisfy the “Dirac quantization” condition.
72 The type {IV ; I∗1 , I1} admits a double cover of type {IV 2, I2

2} which does not satisfy the SW completeness
criterion.
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For simplicity in the rest of this section we focus on the first cover in each of the above items

(they are the more interesting anyhow). They have the property that the fiber F
(2)
0 ≡ I0 is smooth

and hence F
(1)
0 ∈ additive∗ ∩ semi-simple. For the five coverings we have respectively,

F
(1)
0 = III∗, IV ∗, I∗0 , I

∗
0 , I

∗
0 . (9.4)

In each case F
(1)
0 is the only reducible fiber over u 6=∞.

Lemma 9.0.1. Let S be an integral non-narrow section, narrow at ∞, of an elliptic surface which

is the base of one of the above 5 coverings E(2) → E(1). One has

h(S) =
2

deg f
. (9.5)

Moreover k(S) = deg f , except for the first degree-4 cover where k(S) = deg f/2.

Remark 9.0.1. The first case corresponds to Example 26 which does not present peculiarities.

9.1 Functoriality under base change

Base change yields a commuting diagram

E2
F //

π2

��

E1

π1

��

P1
f

// P1

(9.6)

where F is a rational map. Base change (9.1) induces a map of Mordell-Weil groups

f ] : MW(E1)→ MW(E2). (9.7)

At the level of divisors f ]S is the closure of F∗S. The Kodaira formula yields

F∗KE(1) = deg f ·KE(2) (9.8)

Since S
(2)
0 = f ]S

(1)
0 , f ] maps integral sections into integral sections (as expected from the

Number Theoretic analogy). One has [221]

〈f ]S, f ]S′〉NT = deg f · 〈S, S′〉NT, (9.9)

so the pull-back of a narrow-integral section has height 2 deg f .

Conversely, let S ∈ MS(E1) be an integral section with deg f ·h(S) = 2. Its pull-back f ]S would

be an integral section on E(2) of Néron-Tate height 2, that is, an integral-narrow section associated

to an E8-root curve in good position.

Comparing with Lemma 9.0.1 we see that in these examples the root system Ξ∞(E(1)) is

composed by elements which either are associated to E8-root curves in good position on E(1) or

such that there is a cover under which they become associated to E8-root curves in good position.

There are rare situations in which the full set of elements of Λ whose pull-back is associated to an
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Figure 1: The G2 Dynkin graph as a folding of the D4 one.

E8-root curve is a non-reduced root system (see Example 26). Our prescription of considering the

minimal level instead of the degree of the cover reduces the root system to the correct one.

9.2 Explicit examples

We conclude with a couple of explicit examples.

Example 28. We consider the ∆ = 6 QFT with the non-simply-laced flavor group G2, already

discussed in Exercise 14 from the point of view of the Mordell-Weil root system. The Dynkin

graph of G2 is obtained from the one of D4 by folding it, that is, by taking the quotient by the

cyclic subgroup Z/3Z of its automorphism group S3, see figure 1. One expects that the G2 model

is a Z/3Z gauging of a model with D4 oZ/3Z flavor symmetry. The special geometry of the parent

QFT should be the pull-back by the cyclic cover z 7→ z3 of the G2 one. Let us check this idea by

explicitly constructing the two geometries.

For a, b ∈ C, let A be a root of the quadratic equation

A2 + 2(a+ b)A+ (a− b)2 = 0, (9.10)

and set c = (A+ a+ b)/2 = ±
√
ab. Consider the two rational functions

J1(z) = A
z

(z − a)(z − b)
= 1− (z − c)2

(z − a)(z − b)
(9.11)

J2(w) = A
w3

(w3 − a)(w3 − b)
= J1(w3). (9.12)

Clearly, they are related by the base change w → z = w3 branched over w = 0,∞.

The function J2(w) describes a rational elliptic surface of type {I∗0 ; I6
1} with the fiber at infinity

of type I∗0 such that J (∞) = J (0) = 0 while the pole form two orbits under the Z/3Z group

w 7→ e2πi/3w. Therefore, J2(w) describes a very special point in the moduli space of of SU(2)

SQCD with Nf = 4 where τ = e2πi/3 and the hyper masses are invariant under a Z/3Z symmetry.

w is a global coordinate on the SU(2) Coulomb branch and has dimension ∆ = 2. The monodromy

at infinity corresponds to w 7→ e2πiw, and is m(I∗0 ) ≡ −1 ∈ SL(2,Z).
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Figure 2: Diagram folding E6 → F4.

The function J1(z) has two zeros of order 1 and two simple poles. It describes a rational

elliptic surface of type {II; IV ∗, I2
1}; the additive◦ fiber II should be at infinity (cfr. (8.3.1)), so

this function describes a special geometry with ∆ = 6. This is obvious, since z ≡ w3 has dimension

3 · 2 = 6 while w → e2πiw is equivalent to z → e6πiz, that is, the two monodromies at infinity are

related as M2 = M3
1 , which corresponds to the identity M(II)3 = M(I∗0 ). The fiber at the second

branch point of the cover, zero, is IV ∗ and again M(IV ∗)3 = M(I0) = 1.

Since the covering theory has SO(8)oZ/3Z symmetry and the covered one a G2 flavor symmetry

and the deck group is Z/3Z, this geometry precisely corresponds to the diagram folding of figure 1.

We note that

Z(E1)/Z(E1)∞ = Z/3Z, Z(E2)/Z(E2)∞ = 0. (9.13)

In the G2 geometry the group Z/3Z acts on the sub-group of sections narrow at infinity, the trivial

representation corresponding to the subgroup of narrow sections.

f∗ : MW(E1)→ MW(E2)

Example 29. We consider the rational elliptic surface of type {II; I∗0 , I
4
1} which describes a (mass

deformed) ∆ = 6 SCFT with F = F4. Its functional invariant has the form

J1(z) = A
(z − b)3∏
i(z − ai)

. (9.14)

Writing z = w2 we get on the double cover a function J2(w) corresponding to a surface of fiber

type {IV ; I8
1}, that is, the ∆ = 3 model with F = E6 at a certain Z/2Z symmetric point. The

corresponding diagram folding is represented in figure 2.
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Part IV

Coarse classification of the SW geometries in

all ranks
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10 The Coulomb dimensions ∆i

Now we come to the main focus of this part of the thesis, namely to get geometric restrictions on

the spectra of Coulomb branch dimensions ∆i for any rank.

We may address two different problems:

Problem 1. For k ∈ N specify the set

Ξ(k) =

∆ ∈ Q≥1

such that: there is a CSG M

with dimM ≤ k and a generator

u of R ≡ C[M ] with £Eu = ∆u

 (10.1)

Problem 2. For k ∈ N determine the set

Λ(k) =

(∆1,∆2, · · · ,∆k) ∈
(
Q≥1

)k such that: there is a CSG M with

R ∼= C[u1, u2, · · · , uk], £Eui = ∆i ui

 (10.2)

The solution to the Problem 2 contains vastly more information than the answer to Problem

1, since there are strong correlations between the dimensions ∆i of a given CSG and Λ(k) is a

rather small subset of Ξ(k)k. However Problem 1 is much simpler, and its analysis is a first step in

answering Problem 2. We give a solution in the form of a necessary condition: Ξ(k) ⊂ Ξ̂(k), where

Ξ̂(k) is a simple explicit set of rational numbers. There are reasons to believe that the discrepancy

between the two sets Ξ(k) and Ξ̂(k) is small and vanishes as k → ∞. In facts Ξ(k) = Ξ̂(k) for

k = 1, 2, and the equality may hold for all k.

To orient our ideas, we discuss a few special instances as a warm-up for the general case.

10.1 Warm-up: revisiting some well-understood cases

10.1.1 Rank-one again

We know that

Ξ(1) ≡ Λ(1) =
{

1, 2, 3, 3/2, 4, 4/3, 6, 6/5
}
. (10.3)

where 1 corresponds to the free theory and 2 to a SU(2) (Lagrangian) SCFT. We have already

obtained this result from several points of view. In rank-1 the period map is automatically constant

and we have M ∼= C/G, with G a rank-1 modular ST group. However, for a complex G, there are

two possible values of ∆, as we stressed already several times. This correspond to the fact that, in

this case, we have two distinct embeddings m : G ↪→ SL(2,Z) modulo conjugacy.

A rank-1 ST group is cyclic. Let σ be a generator and consider

m(σ) =

a b

c d

 ∈ SL(2,Z) elliptic, τ ∈ h a fixed point aτ + b = τ(cτ + d). (10.4)

The explicit matrices m(σ) corresponding to the 8 elliptic conjugacy classes in SL(2,Z) are written

in the first column of Table I of Kodaira [166] (omitting the non semi-simple ones). Under the
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fiber type ∆ modular factor fiber type ∆ modular factor

regular 1 1 I∗0 2 eπi

II 6/5 e5πi/3 II∗ 6 eπi/3

III 4/3 e3πi/2 III∗ 4 eπi/2

IV 3/2 e4πi/3 IV ∗ 3 e2πi/3

Table 10: Modular factors for the Kodaira fibers with semi-simple holonomy invariant.

action of σ, the period a transforms with the modular factor

σ : a→ a′ = (cτ + d)a while σ : u→ e2πiu, (10.5)

since u is an univalued function. (cτ +d) is a character of the cyclic group G, hence a root of unity.

Let α be the unique real number 0 < α ≤ 1 such that e2πiα = cτ + d. Clearly the only functional

dependence a = a(u) consistent with (10.5) such that a→ 0 as u→ 0 (the tip of the cone) is

a = uα =⇒ ∆(u) =
1

α
≥ 1. (10.6)

Using the matrices in Table I in [166] one recovers the well-known result, see table 10.

Our basic strategy is to mimic this analysis of the k = 1 for general k. Before doing that, we

discuss another special case in two different ways: first we review the conventional approach and

then recover the same results by reducing the analyis to the k = 1 case. This will give the first

concrete example of the basic strategy of the present thesis.

10.1.2 Hypersurface singularities in F -theory and 4d/2d correspondence

There is a special class of simple (typically non-Lagrangian) 4d N = 2 SCFTs which are engineered

in F -theory out of an isolated quasi-homogeneous dimension-3 hypersurface singularity with ĉ < 2

(see eqn.(10.8)) [60, 141]. Their SW geometry (in absence of mass deformations) is given by the

hypersurface F ⊂ C4 of equation

F (x1, x2, x3, x4) ≡W (x1, x2, x3, x4) +
k−1∑
a=0

ua φa(xi) = 0, (10.7)

where W (xi) is a quasi-homogeneous polynomial

W (λqixi) = λW (xi), ∀λ ∈ C,

with qi ≡ deg xi ∈ Q and ĉ ≡
4∑
i=1

(1− 2qi) < 2,
(10.8)

while φa(xi) are the elements of the (2,2) chiral ring R ≡ C[xi]/(∂iW ) having degree < ĉ/2. In

particular φ0 ≡ 1 is the identity operator. The number of φa’s with deg φa < ĉ/2 is equal to the
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rank k of the corresponding 4d N = 2 SCFT and the complex parameters ua in eqn.(10.7) are the

Coulomb branch (global) homogeneous coordinates. One has

deg ua = 1− deg φa where 0 ≤ deg φa < ĉ/2 < 1. (10.9)

The regularity condition of ref.[141], ĉ < 2, ensures that the ua’s have positive degree. The SW

3-form is the obvious one

Ω = PR

(
dx1 ∧ · · · ∧ dx4

F

)
, (10.10)

where PR stands for “Poincaré residue” [139]. At the conformal point, ua = 0, Ω has degree

4∑
i=1

qi − 1 = 1− ĉ

2
> 0. (10.11)

Since Ω (by definition) has U(1)R charge q equal 1, for all chiral object φ with a definite degree,

we have

∆(φ) ≡ q(φ) =
deg φ

1− ĉ/2
, (10.12)

in particular,

∆(ua) =
1− deg φa

1− ĉ/2
≡ 1 +

ĉ/2− deg φa
1− ĉ/2

. (10.13)

To get the Coulomb branch dimensions ∆(ua), it remains to determine the k rational numbers

ta ≡
ĉ

2
− deg φa, a = 0, 1, . . . , k − 1, in particular t0 =

ĉ

2
. (10.14)

There are many ways of doing this, including pretty trivial ones. Here we shall compute the ta’s

in a way that seems unnaturally complicate: but recall that we are doing this computation as a

warm-up, meaning that we wish to perform this elementary computation in a way which extends

straightforwardly to the general case where simple minded methods fail.

Picard-Lefschetz analysis [61]. One convenient viewpoint is the 4d/2d correspondence of

ref.[60]. One considers the 2d (2,2) Landau-Ginzburg model with superpotential F (xi) and uses

the techniques of tt∗ geometry [62,63] to compute 2d quantities which are then reinterpreted in the

4d language. In 2d ĉ is one-third the Virasoro central charges and deg φ is the R-charge (in the 2d

sense) of the chiral object φ.

In the 2d approach, the ta’s are computed using the Picard-Lefschetz theory [28] (see [63]

for a survey in the present language). Consider the family of hypersurfaces Fz = {F (xi) = z}
parametrized by z ∈ C; we have H3(Fz,Z) ∼= Zµ, where µ is the Milnor number of the singularity

W = 0 (i.e. the dimension of the (2,2) chiral ring R). The classical monodromy H of the quasi-

homogeneous singularity W is given by the lift on the homology of the fiber, H3(Fz,Z), along the

closed loop in the base z = ρ e2πit (t ∈ [0, 1] and ρ� 1). Concretely, H is a µ× µ integral matrix

acting on the lattice Zµ whose action on Cµ ≡ Zµ ⊗ C is semi-simple of spectral radius 1 [63]. Let

Φ ⊂ Zµ be the sublattice fixed (element-wise) by H, and consider the quotient lattice Γ = Zm/Φ
which has rank 2k. H induces an automorphism H of Γ. The intersection form in the homology
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of the hypersurface Fz, induces a non-degenerate, integral, skew-symmetric pairing 〈−,−〉 on Γ,

preserved by H. Then

H ∈ Sp(2k,Q) (10.15)

In simple examples the induced polarization 〈−,−〉 is principal, and one has H ∈ Sp(2k,Z); in

the general case we reduce to this situation by a suitable isogeny in the intermediate Jacobian of

Fz. Moreover, H is semi-simple of spectral radius 1 so (by Kronecker’s theorem) it has a finite

order `. Its eigenvalues are of the form {exp(2πiαa), exp(2πi(1 − αa))} for some 0 < αa ≤ 1,

a = 0, 1, . . . , k − 1 with `αa ∈ N. These eigenvalues are related to the ta by the 2d spectral-flow

relation [63]

SpectrumH =
{
e2πiαa , e2πi(1−αa)

}
≡
{
e±2πita

}
. (10.16)

Since 0 < ta < ĉ/2 < 1, for each index a = 0, 1, . . . , k − 1 we have two possibilities

ta = αa or 1− αa, (10.17)

where we relabel the indices of ta so that t0 = max ta. Thus knowing the spectrum of H fixes the

ta’s up to a 2k-fold ambiguity corresponding to choosing for each a one of the two possible values

(10.17). Let us explain the origin of this ambiguity. For simplicity of illustration we assume the

characteristic polynomial P (z) of H to be irreducible over Q; in this case the spectrum uniquely fixes

H up to conjugacy in GL(2k,Q). However two physical systems described by monodromy matrices

H1, H2 ∈ Sp(2k,Z) are physically equivalent iff they are related by a change of duality frame i.e. iff

the corresponding reduced monodromies H1, H2 are conjugate in the smaller group Sp(2k,Z): the

unique GL(2k,Q)-conjugacy class of H decomposes73 into 2k distinct Sp(2k,Q)-conjugacy classes

in one-to-one correspondence with the inequivalent choices of the ta’s. (The conjugacy classes over

the integral group, Sp(2k,Z), are trickier, and will be discussed in section 5). The Picard-Lefschetz

theory has a canonical symplectic structure (i.e. the intersection form in homology) and hence a

canonical choice of the {ta}. The spectrum of Coulomb branch dimension for the SCFT engineered

by the singularity is given by plugging these canonical {ta} in the expressions{
∆(ua)

}
=

{
1 +

ta
1− t0

}
, where t0 = max{ta}. (10.18)

The ray analysis. Let us rephrase the above Picard-Lefschetz analysis in a different language.

We return to eqn.(10.7) and consider the Coulomb branch M of the associated N = 2 SCFT; we see

M as the affine cone over the WPS with homogeneous coordinates (u0, u1, · · · , uk−1) the coordinate

ua having grade ∆(ua). We focus on the closed one-dimensional sub-cone M0 parametrized by the

vev u0 of the chiral operator of largest dimension ∆(u0),

M0 =
{
u1 = u2 = · · · = uk−1

}
⊂M, (10.19)

73 Since P (z) is irreducible, Q[H] is an Abelian number field K of degree 2k. Let k be its maximal real subfield (of

degree k); the elements ξ ∈ k may be written as the rational matrices ξ(H) ≡
∑
s as(H +H

−1
)s with as ∈ Q. Then

the map
Ω→ Ω′ = Ω ξ(H)

identifies the set of inequivalent Q-symplectic structures compatible with H with the multiplicative group
k×/k×tot.pos.

∼= Zk2 . See section 5 for more details.
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which is preserved by the C×-action generated by the Euler field E . Metrically, M0 is a flat cone

and the restricted period map τ |M0 is constant. The only difference with respect to the rank-one

case of §. 10.1.1 is that the monodromy H around the tip of the cone M0 is now valued in Sp(2k,Z)

instead of Sp(2,Z).

A Coulomb vacuum x ∈M0 ⊂M preserves a discrete subgroup of U(1)R of the form Zn where

n is the order of 1/∆(u0) in Q/Z. Since in an interacting unitary theory ∆(u0) > 1, this subgroup

is never trivial, and n > 2 (i.e. the unbroken subgroup is complex) if ∆(u0) 6= 2 (i.e. unless u0 is

superficially marginal). The Zn symmetry unbroken along the locus M0 ⊂M is generated by

exp
(
2πiR/∆(u0)

)
, (10.20)

and the action of this operator on the cohomology of a (regular) fiber of the special geometry is

given by H e2πi(1−ĉ/2), the extra factor e2πi(1−ĉ/2) corresponding to the spectral flow in the (2,2)

language [63]. Thus

SpectrumH =
{

exp
[
± 2πi

(
ĉ/2− 1 + ∆(ua)/∆(u0)

)]}
⇒ ta = ĉ/2− 1 + ∆(ua)/∆(u0), t0 = ĉ/2,

and ta = (1− t0)(∆(ua)− 1),

(10.21)

which gives back (10.18). Thus, in the context of 4d N = 2 SCFTs engineered by hypersurface

singularities, the classical monodromy computation of the dimensions ∆(ua) may be rephrased as

a local analysis along the sub-locus M0 in the Coulomb branch M of vacua which leave unbroken

the largest possible discrete subgroup of U(1)R. The local analysis on M0 is essentially identical to

the k = 1 case.

The classical monodromy approach is unsatisfactory in two ways:

a) it works for a particular class of SCFTs;

b) is not democratic in the following sense: we have many sub-loci in the Coulomb branch M over

which some discrete R-symmetry is restored, but the classical monodromy (when applicable)

applies to just one of them (the one with the largest unbroken symmetry).

In order to solve Problems 1, 2 we need a generalization of the classical monodromy con-

struction which may be applied uniformly to all loci in the Coulomb branch with some unbroken

discrete R-symmetry, and to all SCFT, while reducing to the classical Picard-Lefschetz theory when

we consider the locus of largest unbroken U(1)R symmetry of a SCFT engineered by a F -theory

singularity.

Suppose such a generalization exists. Along the Coulomb branch of a typical SCFT we have

several loci with enhanced (discrete) R-symmetry; each such locus produces a list of ∆a. Then we

get the highly non-trivial constraint that the dimension set {∆a} should be the same independently

of which special locus we use to compute it. On the other hand, the agreement of the dimensions

computed along different loci in M is convincing evidence of the correctness of the method.

In the remaining part of this note we describe the generalized method, and check its consistency

is a variety of examples. Although we could present the algorithm already at this stage in the form
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of an educated guess inspired by the classical Picard-Lefschetz formulae, we prefer to deduce it

mathematically from scratch. Before doing that, we need some elementary preparation.

10.2 Cyclic subgroups of Siegel modular groups I

We saw already in the k = 1 case that an important ingredient in the classification of all possible

dimension sets {∆a} is the list of all embeddings of the cyclic group Zn (or more generally of a

finite group G) into the Siegel modular group Sp(2k,Z) modulo symplectic conjugacy in Sp(2k,Z)

(cfr. discussion around eqn.(10.17)).

We start by establishing a fact, already mentioned in §.6.2, which applies to all subgroups of

the Siegel modular group, cyclic or otherwise.

Lemma 10.2.1. Let G ⊂ Sp(2k,Z) be a finite subgroup. The fixed locus in the Siegel upper half-

space Hk ≡ {τ ∈ C(k) | τ = τ t, Im τ > 0}

Fix(G) =
{
τ ∈ Hk ∼= Sp(2k,R)/U(k)

∣∣∣ g · τ = τ , ∀ g ∈ G
}

(10.22)

is non-empty and connected.

Remark 10.2.1. The proof shows that the Lemma holds for all duality-frame groups S(Ω)Z.

Proof. Being finite, G is compact. Hence G ⊂ K for some maximal compact subgroup K ⊂
Sp(2k,R). All maximal compact subgroups in Sp(2k,R) are conjugate to the standard one, the

isotropy group of i1k ∈ Hk, that is, there is R ∈ Sp(2k,R)

K =

R−1

A B

C D

R ∣∣∣∣∣ Ai+B = i(Ci+D) ∈ U(k)

 . (10.23)

The Cayley transformation C maps biholomorphically the Siegel upper half-space Hk into the Siegel

disk [49,57]

Dk =
{
w ∈ C(k)

∣∣ wt = w, 1−ww∗ > 0
}
, (10.24)

taking τ = i1k to the origin w = 0 and conjugating the standard maximal compact subgroup into

the diagonal subgroup. Then

CRGR−1C−1 ⊂


U 0

0 U∗

 , U ∈ U(k)

 . (10.25)

Consider the embedding U : G ↪→ U(k) sending g into the upper-left block of CRgR−1C−1; we

write V for the corresponding degree-k unitary representation. The action of G on the Siegel disk

Dk is linear

w 7→ U(g)w U(g)t, g ∈ G, (10.26)

i.e. the Cayley-rotated period w transforms in the symmetric square representation �2V . The

fixed locus of G is the intersection of Dk ⊂ �2V with the linear subspace

(�2V )U(G) ⊂ �2V (10.27)
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of trivial representations whose dimension d is as in eqn.(10.40); in particular Fix(G) is non-empty

and connected. In the special case that �2V does not contain the trivial representation, the fixed

locus reduces to the origin in Dk, and hence is an isolated point. Mapping back to the Siegel upper

half-space Hk, the fixed point is

τ = R−1(i1k) ≡ (iAR +BR)(iCR +DR)−1, R−1 ≡

AR BR

CR DR

 ∈ Sp(2k,R). (10.28)

In the general case

Fix(G) = R−1C−1
(
(�2V )U(G)

)
∩ Hk. (10.29)

If τ ∈ Fix(G) we haveA B

C D

τ τ̄

1 1

 =

τ τ̄

1 1

Cτ +D 0

0 Cτ̄ +D

 , ∀

A B

C D

 ∈ G ⊂ Sp(2k,Z), (10.30)

and the embedding U : G ↪→ U(k) is given by the modular factor Cτ +D ∈ U(k), cfr. the discussion

of the k = 1 case around eqn.(10.4). This is the same factor appearing in the transformation of

the a-periods, a→ (Cτ +D)a, and is the one which controls the Coulomb dimensions, as we saw

in the k = 1 case. Implicitly we have already used these facts in the discussion of the CSG with

constant period map, §. 6.2.

Let us specialize to the case in which G is a cyclic group Zn generated by a matrix m ∈
Sp(2k,Z). m is called regular iff Fix(m) is an isolated point, i.e. iff �2V does not contain the

trivial representation. Note that this is a weaker notion than m being regular as an element of the

Lie group Sp(2k,R) which requires the characteristic polynomial of m to be square-free; we shall

refer to the last situation as strongly regular. The spectrum of the unitary matrix U(m) = Cτ +D

is a set of k n-th roots of unity, {ζ1, . . . , ζk}, and m is regular iff

ζiζj 6= 1 for all 1 ≤ i, j ≤ k. (10.31)

The eigenvalues of the 2k × 2k matrix m are {ζ1, . . . , ζk} ∪ {ζ−1
1 , . . . , ζ−1

k } the union being disjoint

iff m is regular. Let ψζ be the normalized eigenvector of m associated to the eigenvalue ζ. The

symplectic matrix Ω of Sp(2k,Z) corresponds to the 2-form

Ω = i
∑
i

ψζi ∧ ψζ−1
i

(10.32)

Thus, for m regular, the splitting of the spectrum of m in the two disjoint sets Spectrum U(m) and

Spectrum U(m) may be read directly from Ω: the eigenvalue ζ belongs to the spectrum of U(m) iff

the term ψζ ∧ ψζ−1 appears in −iΩ with the + sign, otherwise ζ−1 ∈ Spectrum U(m).

We shall present a much more detailed discussion of the cyclic subgroups of the Siegel modular

group in section 5 below.
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10.3 The Universal Dimension Formula

10.3.1 Normal complex rays in CSG

As anticipated at the end of §.10.1.1, our goal is to reduce the determination of the ∆a’s to the

analysis of one-dimensional conic complex geometries. In this subsection we introduce the basic

construction. We start with a definition:

Definition 14. Let M be the Kähler cone of a CSG with holomorphic Euler vector E = (E−iR)/2.

A complex ray M∗ ⊂ M is a closed one-dimensional complex subspace preserved by the action of

E . A complex ray M∗ ⊂M is called normal iff it is normal as an analytic subspace of M .

Thus, a complex ray M∗ is the orbit under the Lie group generated by E,R of a point x 6= 0

in M . Equipped with the induced metric, M∗ is a Kähler cone, hence locally flat. Restricting our

considerations to a ray makes physical sense; indeed

Proposition 10.3.1. Let M be a Kähler cone and M∗ ⊂ M a complex ray. Then M∗ is totally

geodesic in M .

Proof. Since M is a Kähler cone, we have the holomorphic field E ≡ E + iR such that ∇īEj = 0

while ∇iEj = δji . With respect to the induced Kähler metric, M∗ is also a Kählerian cone with

a holomorphic Euler vector E∗ = E|M∗ . E∗, Ē∗ span the real tangent bundle TM∗. Let ∇∗ be the

Levi-Civita connection of the induced metric on M∗. The second fundamental form of M∗ in M is

II(E∗, E∗) = ∇EE
∣∣
M∗
−∇∗E∗E∗ = E

∣∣
M∗
− E∗ = 0

then also II(E∗, Ē∗) = II(Ē∗, Ē∗) = 0.
(10.33)

The chiral ring of M is the ring of global homomorphic functions, R = Γ(M,OM ). The linear

differential operator E acts on R and we write S for its spectrum, i.e. the set of dimensions of

chiral operators. R is the Frechét completion of a finitely generated graded ring. If φ ∈ R is a

homogeneous element of degree ∆(φ), we have Eφ = ∆(φ)φ. In the same way we write R∗ for the

ring of holomorphic functions on the ray M∗ and S∗ for the spectrum of E∗ in R∗.

Proposition 10.3.2. Let M∗ ⊂M be a normal complex ray of the special cone M . Then S∗ ⊂ S.

Moreover, R∗ is the Frechét completion of the graded ring C[u∗] where the single generator u∗ has

dimension 1 ≤ ∆∗ ∈ S∗, and there is a generator u of R having the same dimension ∆∗.

Proof. M is Stein, and M∗ ⊂ M is a closed analytic subspace. Hence, by Cartan’s extension

theorem [119,135] we have an epimorphism of chiral rings

R
i∗−−→ R∗ → 0, (10.34)

given by restriction, which preserves the E action. Hence S∗ ⊂ S. In this argument we do not use

the fact that M∗ ⊂ M is normal. However, if M∗ is not normal, there is a subtlety in the above

statement. Let i : M∗ →M be the closed inclusion. Cartan’s theorem states

Γ(M,OM )
i∗−−→ Γ(M∗, i

∗OM )→ H1(M, ker i∗) ≡ 0, (10.35)
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where i∗OM is the structure sheaf of M∗ seen as an analytic subspace of M . Iff M∗ is normal, i∗OM
coincides with the structure sheaf of its normalization OM∗ (i.e. with the integral closure of i∗OM
stalk-wise); its global sections Γ(M∗,OM∗) correspond to the “intrinsic” notion of holomorphic

functions on M∗, while Γ(M∗, i
∗OM ) is the subset of holomorphic functions on M∗ seen as a concrete

sub-space of M . We illustrate this subtlety in Example 30 below. Then, although the result is

valid in general, to apply it for M∗ ⊂M not normal we need to be able to distinguish holomorphic

functions in the two different senses. If M∗ is normal, it coincides with its own normalization, and

the two notions coincide.

Since M∗ is one-dimensional and normal, it is smooth.74 On M∗ we have a C× action ζ 7→ ζE ,

acting transitively on M∗ \ {0}. Then M∗ is analytically (hence algebraically) a copy of C on

which ζE acts by automorphisms fixing the origin. Let u∗ be a standard coordinate on this C; the

polynomial ring C[u∗] is dense in Γ(M∗,OM∗) and graded by deg u∗ = Eu∗ > 0.

If w ∈ R is a homogeneous holomorphic function with ∆(w) 6∈ S∗ we must have w|M∗ ≡ 0. Let

{vi}ki=1 be a set of homogeneous generators of (a dense subring of) the global chiral ring R. Not

all restrictions {vi|M∗}ki=1 may vanish identically since in a Stein manifold the ring of homolorphic

functions separates points [135]. Let u ∈ {vi} be a generator of R with u|M∗ 6≡ 0 of smallest degree

d∗. All (non constant) homogenous elements f ∈ R either restrict to zero f |M∗ ≡ 0 or have a

degree ≥ d∗. Since R∗ ∼= C[u∗], for some u∗ having minimal positive degree in R∗, and u∗ is the

restriction of a function in R, we conclude that we may choose u∗ = u|M∗ . Therefore the dimension

d∗ ≡ ∆∗ of the generator u∗ of R∗, is equal to the dimension ∆(u) of the generator u of the full

chiral ring R.

Example 30. We illustrate the subtle point in the proof of the above Proposition. We consider

SU(3) SQCD with Nf = 6 at weak coupling and zero quark masses. In this case the Coulomb

branch ring is C[u, v] where the generators u and v have dimensions 2 and 3. The (reduced) complex

rays are

Mu = {v = 0}, Mv = {u = 0}, M(α) = {v2 = αu3}, α ∈ C×. (10.36)

Mu and Mv are normal with Ru = C[u], Rv = C[v]; we see that the generators of the two normal

ray rings, u and v, are generators of the full chiral ring R. Instead, M(α) is a plane cubic with a

cusp, which is the simplest example of a non-normal variety (see e.g. §.4.3 of [112]). The ring of

holomorphic functions in the subspace sense is not integrally closed. The integral closure of the ray

ring contains the function v/u (indeed, (v/u)2 = αu) which is holomorphic in the normalization

and has dimension 1, a dimension 6∈ S.

Remark 10.3.1. Note that the non-normal rays M(α) in the above example correspond to the

“non-free” geometry discussed in ref. [15].

10.3.2 Unbroken R-symmetry along a ray

The statements in §.10.3.1 reduce the computation of the Coulomb dimensions of the generators

of R to local computations at normal complex rays in the conical Coulomb branch M . This leads

to the following two questions: 1) are there enough normal complex rays to compute all Coulomb

dimensions? 2) how we characterize the normal complex rays?

74 As a complex space; the Kähler metric has a conical singularity at the tip.
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In Example 30 we see that the two normal complex cones in the Coulomb branch M of SU(3)

SQCD are precisely the loci of Coulomb vacua with an unbroken discrete subgroup of U(1)R,

namely Z3 for Mv and Z2 for Mu. All non-normal rays consist of vacua which completely break

U(1)R (except at the tip where the full U(1)R is restored). This characterization of normal rays by

unbroken R-symmetry holds in general.

To a complex ray M∗ there is associated a rational positive number α∗, namely the smallest

positive number such that

exp(2πα∗R) = IdM∗ . (10.37)

α∗ ∈ Q>0 since the R-symmetry group U(1)R is compact. In the physical language this means that

a subgroup of U(1)R is unbroken:

Fact. A Coulomb vacuum x ∈ M∗ ⊂ M preserves a discrete Zn ⊂ U(1)R R-symmetry where n is

the order of α∗ in Q/Z. We say that M∗ is an elliptic ray iff n > 2.

In section 3 we presented some evidence that the chiral ring is a free polynomial ring (or simply

related to such a ring). In this case M is parametrized by weighted homogeneous coordinates ui
having weights ∆i ∈ Q≥1. Then the complex ray along the i-th axis

Mi ≡
{

(u1, u2, · · · , uk) = (0, 0, · · · , i-thu , 0, · · · , 0), u ∈ C
}
⊂M (10.38)

is normal and has αi = 1/∆i. If ∆i = ri/si > 1 with (ri, si) = 1, the order of the residual R-

symmetry is ni = ri ≥ 2 with equality iff ∆i = 2, i.e. iff ui is the vev of a (superficially) marginal

operator. In particular, if R is a free polynomial ring we do have enough normal rays.

Let M∗ be a normal ray and x ∈M∗ \ {0}. We consider the closed R-orbit

x(t) = exp(2πα∗tR) · x ∈M∗, t ∈ [0, 1]. (10.39)

The monodromy of this path is an element m∗ of the modular group Sp(2k,Z) which is independent

of x modulo conjugacy. We have

det[z −m∗] =
∏
`|n

Φ`(z)
s(`), s(`) ∈ {0, 1, 2, · · · },

∑
`|n

s(`)φ(n) = 2k, (10.40)

since exp(2πnα∗R) acts trivially on the periods. We say that M∗ is regular if its monodromy m∗
is strongly regular. Regularity is equivalent to s(`) ∈ {0, 1} (so s(1) = s(2) = 0 in the regular

case). Regularity implies that the fixed period τ is unique. More crucially, it means that the ray

is not part of the “bad” discriminant locus, M∗ 6⊂ Dbad. Here Dbad is the union of the irreducible

components of D with a non-semi-simple monodromy; along Dbad the period matrix τ degenerates

in agreement with the SL2-orbit theorem, see §. 5.1.5. Indeed, strong regularity implies that all the

eigenvalues of m∗ are distinct, and no non-trivial Jordan block may be present. More generally, we

split the product in (10.40) in the square-free factor
∏
s(`)=1 Φ`(z) and the complementary factor∏

s(`)>1 Φ`(z)
s(`). m is conjugate in Sp(2k,Q) to a block-diagonal matrix of the form mreg⊕mcomp

with mreg ∈ Sp(2kreg,Z) strongly regular. Then, up to isogeny,75 τ = τ reg ⊕ τ comp for a unique

75 These statements follow from the Poincaré total reducibility theorem.
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τ reg. The regular rank kreg of M∗ is

kreg =
1

2

∑
` : s(`)=1

φ(`). (10.41)

Thus, locally at the ray, the family of Abelian varieties X → M∗ splits (modulo isogeny) in a

product X1×X2 →M∗, and M∗ is not in the “bad” discriminant of the first factor (but it may be

for the second one).

Let M∗ be a normal ray which is also regular. The real function r2 = Im τ ij a
iāj is smooth and

non-zero on M∗; since Im τ ij is the unique fixed period, which is non singular on M∗ (in particular,

bounded), it means that there exists a C-linear combination a∗ of the periods ai which does not

vanish on M∗ (more precisely, a∗ is well defined on a finite cyclic cover of M∗ branched at the

tip). Applying m∗ to a∗, we see that e2πiα∗ ≡ e2πi/∆(u∗) belongs to the spectrum of m∗. Since

m∗ is the lift of the generator of the unbroken subgroup Zn ⊂ U(1)R, we conclude that e2πiα∗ is

a n-root of unity. In facts, it should be a primitive root, otherwise the unbroken symmetry would

be smaller. Comparing with the k = 1 case, and using Proposition 10.3.2 we learn that 1/α∗ is

the dimension of a generator of the full chiral ring R. Now suppose that M∗ is not regular. Taking

into account only the “good” block, that is, focusing on the first local family, X1 →M∗, we reduce

to the regular situation. The argument applies to the irregular block too, as long as Im τ ij is not

singular on M∗. In general we may decompose Im τ ij in a regular block and one which is in the

modular orbit of i∞. The argument works as long as the regular block is non-trivial, that is as

long as along M∗ not all photons decouple.

Then

Fact. If in M there is a normal ray with residual R-symmetry Zn, there should be a generator of

R with ∆ = n/s, s ∈ (Z/nZ)× i.e. e2πi/∆ is a primitive n-th root of unity. e2πi/∆ is an eigenvalue

of a quasi-unipotent element m∗ ∈ Sp(2k,Z), and hence φ(n) ≤ 2k.

Remark 10.3.2. Above we assumed the polarization Ω to be principal. In the general case, we

replace the Siegel modular group with the relevant duality-frame group S(Ω)Z. The conclusion

φ(n) ≤ 2k being still valid.

10.3.3 The Stein tubular neighborhood of a complex ray

A ray M∗ ⊂M is a closed analytic subset, hence a Stein submanifold of the Stein manifold M , and

the restriction map R → R∗ is essentially surjective (the image is dense in the Frechét sense). The

Docquier-Grauert theorem [119] guarantees that we can find a Stein tubular (open) neighborhood

M◦ of M∗ in M . There is a holomorphic retraction of M◦ onto M∗, and M◦ is biholomorphic to a

neighborhood of the zero section in the normal bundle of M∗ in M [119]. The fact that M◦ retracts

holomorphically to M∗, means that the monodromy group of the special geometry restricted to

M◦ is just the cyclic group generated by m∗. In particular, the a-periods are well-defined on an

unbranched cover M̃◦ \ {0} →M◦ \ {0} with Galois (deck) group Zn generated by m∗.

Since (M,OM ) is a normal analytic space, so is (M◦,OM |M◦). We have the restriction mor-

phisms

R
mono−−−−→ R◦

epi−−→ R∗. (10.42)
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Lemma 10.3.1. The map R → R◦ preserves the spectrum of E.

Proof. Suppose on the contrary that there is an eigenvalue λ of E◦ which is not in the spectrum S

of E , and let f ∈ R◦ be a non-zero eigenfunction. Let x ∈ M◦ be such that f(x) 6= 0, and extend

f by homogeneity on the closed complex ray generated by x, Mx ≡ ζE · x. Since ix : Mx →M is a

closed embedding and f ∈ Γ(Mx, i
∗
xOM ), by Cartan’s theorem f extends to a function in Γ(M,OM )

and then λ ∈ S.

10.3.4 Tubular neighborhoods and the Universal Dimension Formula

Identifing the tubular neighborhood M◦ of the normal ray M∗ with a neighborhood of the zero-

section in the normal bundle, we may introduce homogeneous complex coordinates

(u, v1, v2, · · · , vk−1) (10.43)

such that M∗ ⊂ M◦ is given by the analytic set v1 = v2 = · · · = vk−1 = 0, while u = u∗ is

the coordinate along the normal ray M∗. Indeed, the additional coordinates vi are just linear

coordinates along the fibers of the holomorphic normal bundle. The vi are globally defined in M◦
since the holomorphic normal bundle of M∗ is holomorphically trivial. This follows from a result

of Grauert (cfr. Theorem 5.3.1(iii) of [119]) since dimCM∗ = 1.

We saw in the previous subsection that u is homogeneous of degree 1/α∗. Along the ray M∗ only

a complex-linear combination of the a-periods, a∗, does not vanish. In the tubular neighborhood M◦
all k linear combinations of the a-periods are not (identically) zero. In a conical special geometry

the a periods transform through the modular factors

a′ = (Cτ +D)a, (10.44)

where τ is the (constant) period matrix on M∗. Hence, if m∗ is a regular elliptic element of

Sp(2k,Z) and (e2πiα∗ , e2πiβ1 , · · · , e2πiβk−1) is the spectrum of Cτ +D, with e2πiα∗ a primitive n-th

root of unity, we may find complex-linear combinations of a-periods a∗, ai in M◦ which diagonalize

the action of m∗
a′∗ = e2πiα∗ a∗, 0 < α∗ ≤ 1

a′s = e−2πiβsas s = 1, . . . , k − 1, 0 ≤ βs < 1,
(10.45)

where a∗ is the linear combination non-zero along the ray M∗.

Fact. The generalization of the k = 1 equation (10.6) to the tubular neighborhood M◦ of a regular

normal ray M∗ is

a∗ ∝ uα∗ , (10.46)

as ∝ vs u−βs for s = 1, . . . , k − 1. (10.47)

Proof. Eqn.(10.46) is just the previous result along the normal ray M∗. Let us consider the C-

periods as vanishing along M∗. The a-periods should transform with the correct monodromy m∗
along the path

u→ e2πitu, t ∈ [0, 1], vs = const (10.48)
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cfr. eqn.(10.45). Thus we must have

as = fs(v)uαs with fs(0) = 0 and 2πiαs = log
(
e−2πiβs

)
. (10.49)

It remains to fix the functions fs(v) and the branch of the logarithm giving the correct value of

αs. The holomorphic symplectic form Ω = dai ∧ (dxi − τ ij dyi) should have maximal rank when

restricted to M∗, so that df1 ∧ · · · ∧ dfk−1|M∗ 6= 0 and hence

fs = Ast vt + higher order detA 6= 0. (10.50)

We may set Ast to the identity matrix by a linear redefinition of the vs. Since the fs are homogeneous

functions, the higher order corrections vanish. Finally the branch of the logarithm is fixed to

αs ≡ −βs by the requirement that the dimensions satisfy the unitary bound ∆[vs] ≥ 1.

Then the k dimensions of the generators of R are

∆i ≡ ∆(vi) =

{
1 + βi/α∗ i = 1, . . . , k − 1

1/α∗ i = k,
= 1 +

βi
1− βk

(10.51)

where we set vk ≡ u∗ and βk = 1− α∗.

If M∗ is normal but non regular, we cannot determine all dimensions from an analysis in the

neighborhood M◦ of M∗ but only as many as its regular rank kreg.

Remark 10.3.3. These formulae have the following natural property. Let m∗ be weakly regular,

that is, some eigenvalue ζ of U(m∗) have multiplicity s > 1. Assume a∗ is an eigenperiod associated

to ζ; then α∗ = α while (s−1) β’s are equal 1−α. The dimensions of the s operators associated to

the eigenvalue ζ are all equal to 1/α, without distinction between the operator parametrizing the

ray and the operators parametrizing its normal bundle. This property guarantees that we get the

correct dimension spectrum for SCFT whose Coulomb branch is birational to a product of identical

cones, so that the largest dimension ∆max is degenerate. This happen e.g. in class S[A1] SCFTs

where {∆i} = {2, 2, 2, · · · , 2}.

The (universal) dimension formula (10.51), if correct, should pass three crucial consistency

checks:

a) it should reproduce the well-known formulae for constant period maps, in particular for all

weakly-coupled Lagrangian SCFTs.

b) it should reproduce the Picard-Lefschetz results for models engineered by hypersurface sin-

gularities in F -theory;

c) it should produce the same spectrum of dimensions independently of which normal regular

ray M∗ ⊂M we consider;

The third requirement is quite strong, and it seems a priori quite unlike that such a strong property

may be acutally true. We perform the three checks in turn.

104



10.3.5 Relation to Springer Theory

We have to check that the “abstract” dimension formula (10.51) reproduces the obvious dimensions

for a weakly-coupled Lagrangian SCFT and more generally for all CSG with constant period maps

of the form M = Ck/G for a degree-k ST group G whose chiral ring R coincides with the ring of

polynomial invariants (see §.6.2).

That eqn.(10.51) correctly reproduces the ST degrees di as dimensions ∆i of the generators of

R is a deep result in the Springer Theory of regular elements in finite reflection groups [38,83,237].

We recall the definitions: let the finite group G act as a reflection group on the C-space V . A

vector v ∈ V is said to be regular iff it does not lay in a reflection hyperplane. An element g ∈ G
is said to be regular if it has a regular eigenvector v. The regular degrees of G are a (minimal) set

of integer numbers such that the order of all regular elements of G is a divisor of an element of the

set and conversely all divisors of these numbers are the order of a regular element. Then

Theorem 6 (see [83, 237]). Let ζ be a primitive d-root of unity. Let g ∈ G be regular with regular

eigenvector v ∈ V and related eigenvalue ζ. Denote by W the ζ-eigenspace

W = {x ∈ V | gx = ζx}. (10.52)

Then:

(i) d is the order of g, and g has eigenvalues ζ1−d1, ζ1−d2 , · · · , ζ1−dk , where di are the degrees of

G;

(ii) dimW = #{i | d is a divisor of di};

(iii) the restriction to W of the centralizer of g in G defines an isomorphism onto a reflection

group in W whose degrees are the di divisible by d and whose order is
∏
d|di di;

(iv) the conjugacy class of g consists of all elements of G having dimW eigenvalues ζ.

One can show that an integer is regular iff it divides as many degrees as co-degrees [130].

Remark 10.3.4. All irreducible ST groups have at least one regular degree. In facts, they have

either 1 or 2 regular degrees, except for the Weyl groups of E6 and E8 which have three regular

degrees each, respectively {8, 9, 12} and {20, 24, 30}. If G is a Weyl group, the Coxeter number h

is one of the regular degrees. See refs. [83, 130] for tables of regular degrees.

Corollary 10.3.1. Going through the the tables [83,130], one sees that part (ii) of the Theorem

implies that for an irreducible crystallographic Shephard-Todd group dimW = 1 for all regular

degrees d. In other words, in the crystallographic case, the only degree which is an integral multiple

of the regular degree d is d itself.

Let us re-interpret Theorem 6 in the context of the constant-period class of CSG’s discussed

in §. 6.2, with Coulomb branch M = Ck/G, G a degree-k crystallographic ST group, and chiral ring

R = C[a1, · · · , ak]G . For simplicity, we take G irreducible.

By definition, v ∈ Ck is a regular vector iff it does not lay on a reflection hyperplane, i.e. if its

projection ṽ in the Coulomb branch M = Ck/G does not belong to the discriminant locus D ⊂M ,

i.e. iff ṽ ∈M ], the smooth locus.
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Let d be a regular weight of G (so d ≡ di0 for some i0). By definition, there is an element

mi0 ∈ G of order precisely di0 . Let v be a regular eigenvector of mi0 corresponding to the primitive

di0-th root76 ζ = e2πi/di0 . The (closure of the) C×-orbit of ṽ ∈M ], Mv ⊂M , is a complex ray not

lying in the discriminant D (more precisely, intersecting D only at the tip).

We claim that Mv is also normal. Recall that R = C[a1, · · · , ak]G ≡ C[u1, · · · , uk] by the

Shephard-Todd-Chevalley theorem. Homogeneity implies

ui
∣∣
Mv

= ci (λv)di λ ∈ C, (10.53)

for some constants ci. Applying mi0 on both sides, and using Corollary 10.3.1 i.e.

di
di0
∈ N =⇒ i ≡ i0, (10.54)

we conclude that

Mv ≡
{
ui = 0 for i 6= i0

}
≡Mi0 , (10.55)

is automatically a normal right of the form in eqn.(10.38). This also shows that mi0 is the mon-

odromy along the normal ray Mv, which is then regular. This is exactly the set up in which we

deduced the universal dimension formula (10.51). From item (i) in the Theorem 6 we see that

βi = (di − 1)/d and α∗ = 1− βi0 = 1/d. (10.56)

The universal formula (10.51) then yields

∆i = 1 + d βi = di, (10.57)

which is the correct result.

Thus the formula (10.51) is nothing else than the plain extension to the non-Lagrangian SCFT

of the usual formula, valid for all Lagrangian SCFT, following from the standard supersymmetric

non-renormalization theorems.

10.3.6 Recovering Picard-Lefschetz for hypersurface singularities

We consider the hypersurface

F ≡

{
W (x1, x2, x3, x4) +

k−1∑
a=0

ua φa(xi) = 0

}
⊂ C4, (10.58)

where ua has dimension ∆0(1 − deg φa), ∆0 being the relative normalization of the R-charges in

the 4d and 2d sense under the 4d/2d correspondence [60]. We consider the ray parametrized by

the coupling u0 of the 2d identity operator

M0 = {u1 = · · · = uk−1 = 0} ⊂M. (10.59)

76 This is a special choice for complex G; in the case of a Lagrangian SCFT, i.e. if G is a Weyl group, this choice
does not imply any loss of generality.
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The corresponding monodromy m0, along the path u0 → e2πitu0, t ∈ [0, 1] is, by construction, the

one induced on H1(F,Z)/rad 〈−,−〉 by the classical monodromy H of the hypersurface singularity,

that is, (f ≡ rank rad 〈−,−〉)

det[z −H] = (z − 1)f det[z −m0], det[z −m0] =
∏
`≥2

Φ`(z)
s(`). (10.60)

Thus the spectrum of m0 is

spec(m0) =
{
e2πi(qa−ĉ/2) : qa U(1)R charge of 2d chiral primaries with qa 6= ĉ/2

}
. (10.61)

This way of writing implicitly selects a special embedding of m0 into Sp(2k,Z) as well as the

eingenvalue which corresponds to the non trivial period a0 on M0; these are the canonical choices

dictated by Picard-Lefschetz theory. This choice yields

α0 = 1− ĉ

2
, βa =

ĉ

2
− qa, 0 < qa < ĉ/2, (10.62)

so that,

∆0 =
1

1− ĉ/2
, ∆a = 1 +

ĉ/2− qa
1− ĉ/2

≡ 1− qa
1− ĉ/2

, 0 < qa < ĉ/2, (10.63)

which precisely yields back the Picard-Lefschetz formula (10.13) (qa ≡ deg φa by definition).

Example 31 (Complete intersections of singularities). The previous argument applies to all SCFT

which have a 4d/2d correspondent in the sense of [60]; in the general case the classical monodromy

of the singularity H should be replaced by the (2,2) quantum monodromy as defined in [63]. The

eigenvalues of the (2,2) quantum mondromy have the form e2πi(qa−ĉ/2) where qa are the U(1)R
charges of the 2d chiral operators [63]. For instance, this result applies to the models engineered

by the complete intersection of two hypersurface singularities in C5 [244]

W1(xi) +
∑
α

u1,α φ1,α(xi) = W2(xi) +
∑
α

u2,α φ2,α(xi) = 0, (10.64)

where Wa(xi) are quasi-homogeneous of degree d1 ≡ 1 and d2 (we assume d1 ≤ d2 with no loss)

W1(λwixi) = λW1(xi), W2(λwixi) = λdW2(xi) and φa,α(xi) is a basis of the admissible deformations

of the equations.77 This correspond to a 2d model with superpotential [244]

W(xi) = W1(xi) +
∑
α

u1,α φ1,α(xi) + Λ
(
W2(xi) +

∑
α

u2,α φ2,α(xi)
)

(10.65)

where Λ is an extra chiral field of U(1)R charge qΛ = 1−d2. The scaling dimension of the parameters

ua,α is 1− qa,α where qα,α is the charge of the corresponding operator perturbing W, i.e. φ1,α and

Λφ2,α, respectively. One has 1− ĉ/2 =
∑

iwi − d1 − d2 and so [244]

∆(ua,α) =
da − deg φa,α(xi)∑

iwi −
∑

a da
. (10.66)

77 That is, a basis of the Jacobian ring.
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Example 32 (The DZVX models). A third class of 4d SCFT with a nice 2d correspondent is the

one constructed in [90] parametrized by a pair (affine star, simply-laced Lie algebra). Our formulae

yield the correct dimension spectrum by construction.

10.3.7 Consistency between different normal rays

Let us consider a simple (but instructive) class of examples, the Argyres-Douglas (AD) models

of type AN−1 with N odd. The special geometry of the AN−1 AD model corresponds to the

intermediate Jacobian of the following family of hypersurfaces in C4

y2 + w2 + z2 = xN +

(N−3)/2∑
a=0

ua x
a, (10.67)

the period matrix τ being degenerate on the locus where the discriminant of the polynomial in the

rhs vanishes. The coefficient ua (a = 0, 1, . . . , [(N −3)/2]) have degree 2(N −a), so we have a map

M \ {0} → P
(
2N, 2N − 2, · · · , N + 3

)
, (10.68)

through which the period map τ factorizes. We consider the normal rays

Ma = {ub = 0, b 6= a} ⊂M a = 0, 1, · · · , (N − 3)/2. (10.69)

Along the ray M0 we have an unbroken R-symmetry Z2N with a (strongly) regular monodromy

det[z −m0] =
zN + 1

z + 1
. (10.70)

Instead along the ray M1 the unbroken R-symmetry is Z2(N−1) again with regular monodromy

det[z −m1] = zN−1 + 1. (10.71)

Along a ray Ma with a ≥ 2 the discriminant of the polynomial in the rhs of (10.67) vanishes, and

our considerations apply only to the regular factor. The unbroken R-symmetry is Z2(N−a) and we

have (
det[z −ma]

)
regular factor

=

{
(zN−a + 1)/(z + 1) a even

zN−a + 1 a odd.
(10.72)

For each a we have an embedding

ma ∈ Sp(2ka,reg,Z) ≡ Sp(2[(N − a)/2],Z) (10.73)

specified by the spectrum of (Cτ +D)reg.block which consists of ka,reg out of the 2ka,reg roots of the

characteristic polynomial of ma: it is a set of 2(N − a)-th roots of unity satisfying the condition

in equation (10.31). We also need to specify which one of the ka,reg roots corresponds to the non-

trivial period aa on the ray Ma. There is a “canonical” Picard-Lefschetz choice. We have (here
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0 ≤ a ≤ (N − 1)/2)

a ζ embeding α β` ∆`

0 eπi/N ζ2N−2`+1 (N + 2)/2N (2`− 1)/2N (N + 2`+ 1)/(N + 2)

` 6= (N − 3)/2 1 ≤ ` ≤ (N − 1)/2

1 eπi/(N−1) (N + 2)/(2N − 2) (2`− 1)/(2N − 2) (N + 2`+ 1)/(N + 2)

` 6= (N − 3)/2 1 ≤ ` ≤ (N − 1)/2

a eπi/(N−a) ζ2(N−a−`)+1 (N + 2)/(2N − 2a) (2`− 1)/(2N − 2a) (N + 2`+ 1)/(N + 2)

` 6= (N − 2a− 1)/2 1 ≤ ` ≤ [(N − a)/2]

we see that the several rays Ma yield mutually consistent results for the spectra of dimension. M0

and M1 yield the full set of dimensions (which agrees between the two rays), while M2` and M2`+1

yield a partial list of k − ` out of the k dimensions. (But the formal “analytic continuation” gives

the full correct set of dimensions at all normal rays).

Remark 10.3.5. Note that the list of the kreg dimensions computed from a Ma is a kreg-tuple

of dimensions which is allowed for a rank kreg SCFT. In particular, the dimension of the operator

parametrizing a ray with kreg = 1 should be in the one-dimensional list {1, 2, 3, 4, 6, 3/2, 4/3, 6/5}.

Example 33. Consider the Argyres-Douglas models of type D5 and D6 which have k = 2. The ray

parametrized by the operator of the largest dimension corresponds to Picard-Lefschetz theory and

is regular, while the one associated to the operator of lesser dimension is non-regular. We deduce

by the previous Remark that for these models the smaller of the two Coulomb dimensions should

belong to the k = 1 list. Indeed it is 6/5 for type D5, and 4/3 for type D6. This statement may be

generalized in the form of inter-SCFT consistency conditions relating the spectrum of dimensions

in different SCFT. For g ∈ ADE we write {∆}g for the set of Coulomb branch dimensions of

the Argyres-Douglas model of type g and we write {∆}(s)g for the subset obtained from {∆}g by

omitting the s largest dimensions. Then we have the relations

{∆}An = {∆}(1)
Dn+3

. (10.74)

We present a more complicated example of such consistency condition between Coulomb di-

mensions in different ranks.

Example 34 (Argyres-Douglas of type E8). This SCFT has k = 4 with Coulomb dimensions

∆1 = 15/8, ∆2 = 3/2 ∆3 = 5/4 and ∆4 = 9/8. Since 1
2φ(15) = 4 from the ray M1 we should be

able to compute all 4 dimensions (this is classical Picard-Lefschetz for the E8 minimal singularity).

For the other normal rays we have consistency requirements saying that a subset of the dimension

set {15/8, 3/2, 5/4, 9/8} should be the dimension k′ tuple for the appropriate regular rank k′ < k.

Since 1
2φ(3) = 1, from M2 we compute the single dimension 3/2 which is in the k = 1 list. 1

2φ(5) = 2

so from M3 we get a pair of dimensions in the k = 2 list, namely {5/4, 3/2}. Finally 1
2φ(9) = 3

and 3 dimensions out of 4 should form a dimension triple for rank-3. This is consistent since both

{9/8, 15/8, 3/2} and {9/8, 3/2, 5/4} are in the k = 3 list.
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10.3.8 A comment on the conformal manifold

As further evidence of the correctness of the universal dimension formula (10.51), let us consider

the conformal manifold, that is, the space of moduli (deformations) of the CSG. We have already

discussed the special case in which the period map is constant while the chiral ring is the invariant

subring C[a1, . . . , ak]
G (see §. 6.2). In that case the dimension of the conformal manifold was given

by the number of generators of the chiral ring of dimension 2. In the general case, the allowed

continuous deformations of the CSG are described by the rigidity principle (Proposition 5.1.1).

Since the monodromy representation is a discrete datum, a continuous deformation of the CSG is

uniquely determined by the deformation it induces on a single Abelian fiber Xu. Suppose that the

CSG under considerations has a normal ray with semi-simple monodromy m∗. We focus on a fiber

over a point in the ray. If the monodromy is regular, by definition there is no deformation of the

fiber, that is, the conformal manifold reduces to an isolated point. On the other hand, m∗ regular

implies that no chiral operator has dimension 2. Indeed, in an interacting theory a chiral operator

of dimension 2 is necessarily a generator of R. Suppose the dimension of the i-th generator is 2.

Then from eqn.(10.51)

1 +
βi

1− β0
= 2 ⇒ e−2πiβi e−2πiβ0 = ζiζ0 = 1, (10.75)

contradicting the assumption that m∗ is regular. If m∗ is semi-simple, but not regular, the same

argument shows that the dimension d of the conformal manifold is ≤ the number of generators of

R having dimension 2. This is the physically expected result: the number d of exactly marginal

operators is not greater than the number of chiral operators of dimension 2. Note that this is

just an inequality since being m∗-invariant is only a necessary condition for a deformation to

be allowed. Some of the m∗-invariant deformations may be obstructed by other elements of the

monodromy group; comparison with the constant period map case shows that the obstruction

comes from the non-semisimple part of the monodromy group. The non-semisimple part of the

monodromy measures the effective one-loop beta-function of the QFT (cfr. discussion around

eqn.(5.40)). Thus the dimension formula (10.51) is consistent with the physical expectations on

the conformal manifold.

10.4 The set Ξ(k) of allowed dimensions

We write Ξ(k) ⊂ (Q≥1) for the set of all rational numbers which appear as dimension ∆ of a

generator of the chiral ring R in a CSG of rank≤ k. Clearly Ξ(k) is monotonic in k: Ξ(k−1) ⊂ Ξ(k).

If M is a rank k2 CSG, its symmetric power M [k1] – if not too singular – should also be a CSG. This

rather sloppy argument would suggest that the set Ξ(k) also satisfies the following requirement: for

all k1, k2 ∈ N
k2⋃
s=1

s · Ξ(k1) ⊂ Ξ(k1k2), (10.76)

where s · Ξ(k) stands for the set of rationals obtained by multiplying all rationals in Ξ(k) by the

integer s.

To determine Ξ(k) it suffices to give the difference of the sets for two successive ranks k; we

already know that Ξ(1) = {1, 2, 3, 4, 6, 3/2, 4/3, 6/5}. The Fact stated at then end of §.10.3.2
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implies

Ξ(k) ⊆ Ξ̂(k) ≡
{
`

s
∈ Q≥1

∣∣∣∣ φ(`) ≤ 2k, (`, s) = 1

}
. (10.77)

A priori this is just an inclusion, that is, the conditions we got insofar are just necessary conditions.

However, experience with the first few k’s suggests that the two sets Ξ(k) and Ξ̂(k) are pretty close,

and likely equal. The discrepancy (if there is any) is expected to vanish as k increases. Note that

Q≥1 =
∞⋃
k=1

Ξ̂(k), (10.78)

that is, all rational numbers ≥ 1 appear in the list for some (large enough) rank k. For instance if

∆ is a large integer, the Coulomb dimension ∆ will first appear in rank kmin [218]

kmin =
1

2
φ(∆) >

1

2

∆

eγ log log ∆ + A
log log ∆

, where A = 2.50637, (10.79)

while (for comparison) the minimal rank for a Lagrangian SCFT is

kmin,Lag. = ∆/2 > φ(∆)/2. (10.80)

Eqn.(10.77) is shown by recursion in k. For k = 1 we know that it is true with ⊆ replaced by

=. We consider the rays M∗ ⊂ M generated by the vev of a single chiral field of dimension ∆;

along M∗ a R-symmetry Z` is preserved, ` being the order of 1/∆ in Q/Z, so that 1/∆ = s/` with

1 ≤ s ≤ ` and (s, `) = 1. We have ` = 1, 2 iff ∆ = 1, 2. Now let m∗ be the corresponding element

of the monodromy. m`
∗ = 1. m∗ acts on the C-period a∗ non-zero on M∗ by a primitive `-th root

of unity, hence the cyclotomic polynomial Φ`(z) divides det[z −m∗], so that φ(`) = deg Φ`(z) ≤
deg det[z − µ∗] = 2k. The monotonicity of Ξ̂(k) is obvious. Eqn.(10.76) for Ξ̂(k) is equivalent to

the inequality φ(`k2) ≤ φ(`) k2 which holds by Euler’s formula

φ(`k2)

φ(`) k2
=
∏
p|k2
p-`

(
1− 1

p

)
≤ 1. (10.81)

For bookkeeping, it is convenient to list the (candidate) “new-dimensions” at rank k

N(k) ≡ Ξ̂(k) \ Ξ̂(k − 1). (10.82)

Example 35. For instance, for k = 2

N(2) =

{
5,

5

2
,

5

3
,

5

4
, 8,

8

3
,

8

5
,

8

7
, 10,

10

3
,

10

7
,

10

9
, 12,

12

5
,

12

7
,

12

11

}
. (10.83)

Remark 10.4.1. After the completion of our paper [52], the paper [24] appeared on the arXiv in

which Ξ(2) is also determined. The agreement with (10.83) is perfect.

The new-dimension sets N(k) up to k = 13 are listed in table 14.
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10.4.1 The number of allowed dimensions at given rank k

The number of elements of N(k) (resp. the number of integers in N(k)) is

|N(k)| = 2k · ν(2k) resp. |N(k)|int. = ν(2k), (10.84)

where the Number-Theoretic function ν(d) is the totient multiplicity of d ∈ N [219], that is, the

number of solutions to φ(x) = d. A positive integer d is called a totient iff it belongs to the range

of φ, i.e. if ν(d) > 0; an integer d is called a nontotient if it not a totient, i.e. if ν(d) = 0. Thus,

if 2k is a nontotient there are no new-dimensions in rank k, N(k) = ∅, and Ξ̂(k) = Ξ̂(k − 1). The

first few even nontotients are (see sequence A005277 in OEIS [204])

14, 26, 34, 38, 50, 62, 68, 74, 76, 86, 90, 94, 98, 114, · · · (10.85)

hence

N(7) = N(13) = N(17) = N(25) = N(31) = N(34) = N(37) =

= N(38) = N(43) = N(45) = N(47) = N(49) = N(57) = · · · = ∅.
(10.86)

The first few valued of the totient multiplicity ν(2k) (for k ∈ N) are (see sequences A014197 or

A032446 in OEIS [204])

ν(2k) = 3, 4, 4, 5, 2, 6, 0, 6, 4, 5, 2, 10, 0, 2, 2, 7 , 0, 8, 0, 9, 4, 3, 2, 11, 0, · · · (10.87)

Properties of ν(d). We list some useful properties of the function ν(d) [219]:

1) Nontotients have density 1 in N, i.e. totients are “sparse” (density zero) so for “most” ranks

there are no new-dimensions. More precisely, let N(x) be the number of totients less or equal x,

N(x) = #
{
m
∣∣ ∃n ∈ N : φ(n) = m, and m ≤ x

}
, (10.88)

then for all ε > 0 there exists x(ε) ∈ N such that

N(x) <
x

(log x)1−ε for x > x(ε). (10.89)

2) Every integer has a multiple which is a nontotient.

3) The function ν(d) takes all integral values ≥ 2 infinitely times.

4) The Carmichael conjecture (still open) states that ν(d) 6= 1 for all d; the conjecture is known to

be true for d < 101010
.

5) One has

k odd ⇒ |N(k)| ≤ 8k. (10.90)
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The cardinality N(k) of the set Ξ̂(k). N(k) may be written in the form of a Stieltjes

integral

N(k) ≡ |Ξ̂(k)| = 2 +

k∑
`=1

2` ν(2`) = 2 +

2k+ε∫
2−ε

x dV (x). (10.91)

where V (x) is the Erdös-Bateman Number-Theoretic function [34,219]

V (x) =
∑
n≤x

ν(n), (10.92)

whose values for x ∈ N are given by the sequence A070243 in OEIS [204]. Note that V (2k) is also

the number N(k)int of integral elements of Ξ̂(k)

N(k)int ≡
∣∣ Ξ̂(k) ∩ N

∣∣ = V (2k). (10.93)

The first few values are

N(k)int = 5, 9, 13, 18, 20, 26, 26, 32, 36, 41, 43, 53, 53, 54, 57, 64, 64,

72, 72, 81, 85, 88, 90, 101, 101, 103, 105, 108, 110, 119, 119, 127, · · ·
(10.94)

For large x [219]78

V (x) =
ζ(2) ζ(3)

ζ(6)
x+ o

(
x

(log x)C

)
∀ C > 0, (10.95)

ζ(2) ζ(3)

ζ(6)
= 1.9435964 . . . (10.96)

so that as k →∞
N(k) =

2 ζ(2) ζ(3)

ζ(6)
k2 + o(k2). (10.97)

Various expressions for the error term may be found in ref. [34, 219].

To construct the putative new-dimension sets N(k) we only need to solve the equation φ(x) = 2k

for all k ≥ 2. There is an explicit algorithm to solve recursively this equation for a given k once we

know the solutions for all k′ < k [184].

10.4.2 Analytic expressions of N(k) and N(k)int

We define N(x)int for real x as

N(x)int = V (2x) ≡
∑
n≤2x

ν(n). (10.98)

78 ζ(s) is the Riemann zeta-function.
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Note that N(1/2)int = 2 corresponding to the rank-1 Lagrangian SCFT. With this convention,

eqn.(2.4) holds79

N(k) = 2

k+ε∫
0

x dN
(
x
)

int
. (10.99)

To obtain an analytic formula for N(x)int one starts from the Dirichlet generating function N (s)

(chap. 1 of [151]) for the totient multiplicities ν(m). N (s) has an Euler product

N (s) :=
∞∑
m=1

ν(m)

ms
=
∞∑
n=1

1

φ(n)s
=

∏
p : prime

(
1 +

ps

(p− 1)s (ps − 1)

)
. (10.100)

The function N (s)/ζ(s) is analytical in the half-plane Re s > 0, and takes the value ζ(2)ζ(3)/ζ(6)

at s = 1 [34]. Then the subtracted generating function

Ñ (s) := N (s)− ζ(2) ζ(3)

ζ(6)

s

s− 1
, (10.101)

is analytic in the full half-plane Re s > 0. The totient multiplicities ν(m) are obtained from Ñ (s)

by taking the inverse Mellin transform of eqn.(10.100). Thus (cfr. [34] §. 6)

N(x)int =
2 ζ(2) ζ(3)

ζ(6)
x+ lim

t→∞

2+it∫
2−it

(2x+ ε)s

s
Ñ (s)

ds

2πi
. (10.102)

(note the prescription for this convergent but not absolutely convergent integral). From eqn.(10.102)

the asymptotic formula eqn.(2.7) follows by deforming the integration contour to a suitable path

along which Re s < 1 [34].

10.5 Dimension k-tuples {∆1, . . . ,∆k}

As discussed in §. 10.3.4, from the local analysis at a regular (normal) ray we get the full k-tuple

of dimensions {∆1, . . . ,∆k}, a prototypical case being the Picard-Lefschetz theory of a SCFT

engineered by F -theory on a singularity. More generally, from local considerations on a ray of

regular rank kreg we get kreg out of the k dimensions. The number k-tuples of allowed dimensions

in presence of rays of regularity kreg ≥ 2 is much less than |Ξ(k)|k due to correlations between the

dimensions of the various chiral operators of a given SCFT.

At a regular ray we have

det[z −m∗] = Φd1(z)Φd2(z) · · ·Φdt(z) (10.103)

where the factors are all distinct. Two embeddings m∗ ↪→ Sp(2k,Z) are equivalent if they are

conjugate in Sp(2k,Z). A weaker notion of equivalence is conjugacy in Sp(2k,R). It follows from

the considerations in §. 10.2 that a Sp(2k,R) conjugacy class is characterized by a subset of k out of

79 The +ε prescription is needed since N(x) is not a continuous function but rather a function of bounded total
variation on compact subsets of R.
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Φ3Φ6 e2πi/3, e10πi/6 {3, 3/2} e2πi/6, e4πi/3 {6, 3}
e4πi/3, e10πi/6 {3/2, 5/4} e2πi/6, e2πi/3 {6, 5}

Φ4Φ6 e2πi/4, e10πi/6 {4, 5/3} e2πi/6, e6πi/4 {6, 5/2}
Φ5 ζ, ζ3 {5, 3} ζ2, ζ4 {5/2, 3/2}

ζ, ζ2 {5, 4} ζ3, ζ4 {5/3, 4/3}
ζ2, ζ {5/2, 3} ζ4, ζ3 {5/4, 3/2}

Φ8 ζ, ζ5 {8, 4} ζ3, ζ7 {8/3, 4/3}
ζ, ζ3 {8, 6} ζ5, ζ7 {8/5, 6/5}
ζ3, ζ {8/3, 10/3} ζ7, ζ5 {8/7, 10/7}
ζ5, ζ {8/5, 12/5} ζ7, ζ3 {8/7, 12/7}

Φ10 ζ, ζ7 {10, 4} ζ3, ζ9 {10/3, 4/3}
ζ, ζ3 {10, 8} ζ7, ζ9 {10/7, 8/7}
ζ3, ζ {10/3, 4} ζ9, ζ7 {10/9, 4/3}

Φ12 ζ, ζ7 {12, 6} ζ5, ζ11 {12/5, 6/5}

NON PRINCIPAL POLARIZATION

Φ12 ζ, ζ5 {12, 8} ζ7, ζ11 {12/7, 8/7}

Table 11: List of inequivalent embeddings of regular finite cyclic subgroups of Sp(4,Z) that lead
to dimensions {∆1,∆2} ∈ Ξ̂(2)2. For the characteristic polynomial Φd, ζ stands for the standard
primitive d-root, ζ = e2πi/d. The boldface root is the one associated with the non-zero period a∗
along the regular ray. The dimension of the operator spanning the ray M∗ is always the first one
in the ordered pair {∆1,∆2}.

the 2k roots of the characteristic polynomial (10.103) (namely the spectrum of U(m∗)), {ζ1, · · · , ζk},
having the property that ζiζj 6= 1 for all 1 ≤ i, j ≤ k (cfr. eqn.(10.31)). Once given the spectrum

{ζi, · · · , ζk} of U(m∗), we have to select which one of the k roots is the eigenvalue associated to the

non-zero (multivalued) period a∗ on M∗. Renumbering the roots so that this is the first one, we

have

e2πiα∗ = ζ1, e−2πiβj = ζj , j ≥ 2, (10.104)

the dimension k-tuple {∆i} then being given by eqn.(10.51). It may happen that some of the

dimensions in {∆i} so found do not belong to Ξ̂(k); such a k-tuple should be discarded.

A priori, there are 2k ways of splitting the spectrum of m∗ into two non-overlapping sets

satisfying eqn.(10.31). Taking into account the k choices of the root we call ζ1, this yield k · 2k

possibilities for {α∗, βi} for a given characteristic polynomial of the form (10.103). However, some

of these possibilities come with a restriction: it is not true in general that we may find arithmetical

embeddings m∗ ↪→ Sp(2k,Z) which realize as spectrum of U(m∗) all the subsets of roots consistent

with eqn.(10.31). The simplest example is provided by the regular embeddings

Z12 ↪→ Sp(4,Z), det[z −m∗] = Φ12(z). (10.105)
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In this case the sets {e2πi/12, e14πi/12} and {e10πi/12, e22πi/12} are realized as Spectrum U(m∗),

while {e2πi/12, e10πi/12} and {e14πi/12, e22πi/12} are not realized. Thus the allowed dimension sets

depends on subtle Number-Theoretical aspects of the classification of all inequivalent embedding

Zn ↪→ Sp(2k,Z); this topic will be addressed in section 5. There we shall justify the above claim on

the embeddings Z12 ↪→ Sp(4,Z). In section 5 we shall also see that the two spectra {e2πi/12, e10πi/12}
and {e14πi/12, e22πi/12} may be realized by an embedding in Z12 ↪→ S(Ω)Z where Ω is a polarization

with charge multiplies (1, e2) with e2 ≥ 2; this result agrees with Example 5.

Summarizing: a conjugacy class of regular embeddings Zn ↪→ Sp(2k,Z) is a candidate for the

monodromy m∗ at a normal (regular) ray M∗ ⊂M along which the discrete subgroup Zn ⊂ U(1)R
is unbroken. The datum of the conjugacy class, together with a choice of ζ1, produces a candidate

dimension k-tuple {∆1, · · · ,∆k} by eqn.(10.51). It is not guaranteed that {∆1, · · · ,∆k} ∈ Ξ̂(k)k,

and k-tuples which do not belong to Ξ̂(k)k should be discarded. At this point we must also impose

consistency between the various normal rays M∗. This reduce the list of allowed k-tuple even

further. While we have no proof that all the surviving k-tuples are actually realized by some

CSG, the experience suggests that this algorithm produces few “spurious” k-tuples, if any. As an

illustration, we now run the algorithm in detail for k = 2. Ranks k = 3 and k = 4 may be found in

the tables of section 6.

10.5.1 {∆1,∆2} for rank-2 SCFTs

The possible regular characteristic polynomial are Φ3Φ4, Φ3Φ6, Φ4Φ6, Φ5, Φ8, Φ10, Φ12. In table 11

we write only the embeddings of the corresponding regular cyclic groups in Sp(4,Z) which lead to

dimensions {∆1,∆2} ∈ Ξ̂(2)2. For instance, Φ3Φ4 does not have any embedding with this property.

We have written separately the dimensions pairs associated to embeddings in groups S(Ω)Z with

Ω a non-principal polarization. The fine points on the conjugacy classes of elliptic elements in

the Siegel modular group Sp(2k,Z) will be discussed in the next section; table 11 summarizes the

results of that analysis in the special case k = 2.

Consistency between the two rays u2 = 0 and u1 = 0 leads us to consider three situations:

RR pairs of dimensions which appear twice in table 11, once in the form {∆1,∆2} and once in

the form {∆2,∆1} corresponding to the case of both rays being strongly regular;

RN a pair of dimensions {∆1,∆2} where the second one ∆2 ∈ Ξ(1) corresponding to one strongly

regular and one weakly regular of irregular ray;

NN {∆1,∆2} ∈ Ξ(1)2 two weakly regular/irregular rays.

All rank-2 CSG with a conformal manifold of positive dimension must be of type NN. This

holds, in particular, for the weakly coupled Lagrangian models which have

{∆1,∆2} = {2, 2}, {2, 3}, {2, 4}, or {2, 6}. (10.106)

The list of dimension pairs satisfying RR is rather short: {3/2, 5/4} and {10/7, 8/7} which

correspond, respectively, to AD of types A5 and A4. We have 17 dimension pairs of type RN

which may be read from table 11; all of them but {5, 4}, {8, 6} and {10/3, 4} have already appeared
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∆[v] ∆[u] y2 = · · · Mv Mu

10/7 8/7 x5 + ux+ v RI Z10 RI Z8

8/5 6/5 x5 + ux2 + vx RI Z8 Ir Z6

5/2 3/2 x5 + ux2 + 2uvx+ v2 RI Z5 Ir Z3

4 2 Lagrangian SCFT

10 4 x5 + (ux+ v)3 RI Z10 IrZ4

3/2 5/4 x6 + ux+ v RR Z6 RI Z5

5/3 4/3 x6 + ux2 + vx RI Z5 Ir Z4

3 2 Lagrangian SCFT

5 3 x6 + x(ux+ v)2 RI Z5 Ir Z3

10/3 4/3 v−1[x6 + v2x(ux+ 2v)] RI Z10

6 2 Lagrangian SCFT

Table 12: Geometries in refs. [26, 27] with univalued symplectic structure. First two columns give
the Coulomb dimensions, third the family of hyperelliptic curves, third and fourth the regular-
ity/irregularity of the rays along the axes together with the corresponding unbroken R-symmetry.

in the literature as Coulomb dimensions of some CSG. There are three RN dimension pairs with

∆i < 2: {8/5, 6/5} (AD of type D5), {5/3, 4/3} (AD of type D6) and {10/9, 4/3} on which we shall

comment in the next subsection.

10.5.2 Comparing with Argyres et al. refs. [26,27]

The authors of refs. [26, 27] have given a (possibly partial) classification of the dimension pairs

{∆1,∆2} which may appear in a rank 2 SCFT using quite different ideas. It is interesting to

compare their list with the present arguments. To perform the comparison, we need to keep in

mind the two caveat in §.5.1.1.

Let us recall the framework of [26, 27]. They start from the fact that all families of rank

2 principally polarized Abelian varieties are families of Jacobians of genus 2 hyperelliptic curves

which they write in two ways

y2 = v−r/s
(
x5 + · · ·

)
and y2 = v−r/s

(
x6 + · · ·

)
, (10.107)

where · · · stand for certain polynomials in x, u, v depending on the particular CSG which are listed

in [26,27]. u, v are the “global” (in their sense) coordinates in the conical Coulomb branch, with v

the operator of larger dimension. 0 ≤ r/s ≤ 1 is a rational number written in minimal terms, i.e.

(r, s) = 1. Their SW differential has the form

λ ≡ v dx
y

+ u
x dx

y
+ u, v independent. (10.108)

The two rays Mv = {u = 0} and Mu = {v = 0} preserve a discrete R-symmetry which may be read

for each CSG from the explicit polynomials in the large parenthesis. From the same expressions
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∆[v|1−r/s|] ∆[u] y2 = · · ·
4/3 10/9 v−2/5[x5 + v(5ux2 − 15vx− 6uv)]

8/5 6/5 v−1/3[x5 + vx(2ux+ 3v)] Z8

8/5 6/5 v−1/3[x2 − 4v][x3 − 2v(3x+ 2u)]

5/2 3/2 v−1/3[x5 + v(2ux+ 3v)2] Z5

8/5 6/5 v−2/3[x5 + v2x(ux+ 3v)]

5/2 3/2 v−2/3[x5 + v2(ux+ v)2]

4 2 v−1/2[x5 + vx(ux+ 2x)2]

10 4 v−1/2[x5 + v(ux+ 2v)3]

10/9 4/3 v−1/2[x6 + vx(3ux+ 4v)]

2 2 v−1/2[x6 + v(3ux+ 4v)2]

10/3 4/3 v−3/2[x6 + v3x(ux+ 4v)]

5/2 3 v−2/3[x6 + vx(2ux+ 3v)2]

6 2 v−3/2[x6 + v3(ux+ 4v)2]

5 3 v−4/3[x6 + v2x(ux+ 3v)2]

Table 13: The geometries in refs. [26,27] with multivalued symplectic structure. First two columns
contain the cover Coulomb dimensions; third one the hyperelliptic curves.

we may read if these rays are regular irreducible (RI), regular reducible (RR), or irregular (Ir).

We may distinguish their geometries in two classes. The first one is when r/s ∈ Z, that is, the

global pre-factor in the rhs of eqn.(10.108) is a univalued function of v. The geometries with this

property listed in refs. [26,27] are recalled in table 12 (we do not bother to discuss the Lagrangian

models since the agreement with our results is obvious in this case). The first two columns are the

dimensions of v and u as listed in refs. [26, 27]. We see that in all cases these dimensions belong

to the intersection of the sets of dimensions associated with the cones Mv, Mu, yielding perfect

agreement with our approach. Note that only dimensions consistent with a principal polarization

appear, since this is an assumption in [26,27].

The second class of geometries is when r/s 6∈ Z, that is, a multi-valued prefactor. As discussed

in [26] these geometries lead to a susy central charge Z which is well-defined up to a (locally

constant) unobservable phase. Here the first remark of §.5.1.1 applies: to get a univalued SW

differential λ we need to go to a finite cover where a suitable fractional power of v becomes uni-

valued. Then we consider as global coordinates on the cover the functions (v(1−r/s), u) and compare

their dimensions with the ones in our table. This leads to the dimension list in table 13; we see

that all dimension pairs agree with our table on the nose.

Of course, if the physically correct Coulomb branch is the geometrically natural covering which

has a well-defined holomorphic symplectic structure Ω or its quotient considered by Argyres et

al. it is a question of physics not of geometry. There is one aspect that suggests that quotient

of [26, 27] is the physical Coulomb branch: the dimension pair {10/9, 4/3} enters in their list

(twice) only through quotient CSG. The dimensions of the two quotient geometries are, respectively,
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{20/9, 10/9} and {20/9, 4/3}. Now, the both covering dimensions are < 2, and there is evidence

that a consistent SCFT with all ∆i < 2 should be an Argyres-Douglas model of type ADE; since

{10/9, 4/3} does not correspond to such a model, we are inclined to think that physics requires to

take a discrete quotient of the geometrically natural geometry, as the authors of [26,27] do.

11 Elliptic conjugacy classes in Siegel modular groups

Listing the dimension k-tuples {∆1, · · · ,∆k} has been reduced to understand the conjugacy classes

of finite order elements inside the Siegel modular group Sp(2k,Z) or, in case of more general

polarizations (non-trivial charge multipliers ei, see eqn.(5.2)) in the commensurable arithmetic

group S(Ω)Z. In this section we give an explicit description of such classes. Readers not interested

in Number Theoretic subtleties may skip the section.

11.1 Preliminaries

We write Ω for the 2k × 2k symplectic matrix in normal form and 〈−,−〉 for the corresponding

skew-symmetric bilinear pairing.

11.1.1 Elements of Sp(2k,Z) with spectral radius 1

m ∈ Sp(2k,Z) has (spectral) radius 1 iff its characteristic polynomial is a product of cyclotomic

ones

det[z −m] =
∏
d∈I

Φd(z)
sd

I = {d1, · · · , d|I|} ⊂ N,

sd ∈ Z≥1,
∑
d∈I

sd φ(d) = 2k, (11.1)

that is, if all its eigenvalues are roots of unit. An element m of spectral radius 1 is semi-simple

(over C) iff its minimal polynomial is square-free, i.e.∏
d∈I

Φd(m) = 0. (11.2)

A semisimple element m of radius 1 has finite order, mN = 1 with N = lcm{d ∈ I}. Conversely,

all elements of finite order are semi-simple of radius 1.

Lemma 11.1.1. Let m ∈ Sp(2k,Z) be of finite order.

1) There exists R ∈ Sp(2k,Q) which sets m in a block-diagonal form over Q

RmR−1 = diag(m1, · · · ,m|I|), Φd(md) = 0, md ∈ Sp(sdφ(d),Z). (11.3)

2) Suppose that no ratio di/dj (i 6= j) is a prime power. Then in (11.3) we may choose R ∈
Sp(2k,Z). More generally, if ` is a prime such that `r 6= di/dj for all i, j and r 6= 0, we may choose

R ∈ Sp(2k,Z`).
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Proof. For each d ∈ I we define the integral 2k × 2k matrices

Πd =
∏

a∈(Z/dZ)×

∏
e∈I
e 6=d

[
m−aφ(e)t(e)/2 Φe(m

a)t(e)
]
, where t(e) =

{
2 e = 1, 2

1 otherwise.
. (11.4)

Since mΩ = Ωm−t, and

(1/z)φ(e)t(e)/2 Φe(z)
t(e) = zφ(e)t(e)/2 Φe(1/z)

t(e), (11.5)

we have ΠdΩ = ΩΠt
d. Up to a rational multiple, the Πd form a complete set of orthogonal idempo-

tents over Q
1 =

∑
d∈I

Πd

%d
,

Πd

%d
· Πe

%e
= δd,e

Πd

%d
(11.6)

compatible with the skew-symmetric pairing Ω. Then they split over Q the representation in the

block diagonal form of item 1). The splitting is over Z iff the %d are ±1. We have

%d = ±
∏
e∈I
e 6=d

R(Φd,Φe)
t(e) (11.7)

where R(P,Q) stands for the resultant of the two polynomials P and Q. Under the assumption

that d/e, e/d are not prime powers, %d = ±1 [7]. In facts, %d is divisible only by the primes p such

that there is e ∈ I with d/e = pr, 0 6= r ∈ Z [7].

In other words, if no ratio di/dj is a non-trivial prime power, all embeddings m ↪→ Sp(2k,Z) are

block-diagonal up to equivalence. If some di/dj is a prime power, in addition to the block-diagonal

ones, we may have other inequivalent embeddings. We shall return to this aspect after studying

the case that the minimal polynomial is irreducible over Q.

11.1.2 Regular elliptic elements of the Siegel modular group

We recall that a finite-order element m ∈ Sp(2k,Z) is regular iff the eigenvalues {ζ1, · · · , ζk} of

U(m) ≡ Cτ + D satisfy ζiζj 6= 1. The spectrum S ≡ {ζi} of U(m) will be called the spectral

invariant of the regular elliptic element m ∈ Sp(2k,Z). It is a subset of k roots, {ζi}, out of the

2k ones of det[z −m] with the property

ζiζj 6= 1 i, j = 1, . . . , k. (11.8)

Remark 11.1.1. Two regular elliptic elements m,m′ ∈ Sp(2k,Z) which are conjugate in Sp(2k,R)

but not in Sp(2k,Z) have the same spectral invariant, S = S′ but their fixed points τ and τ ′

are inequivalent periods. Two elements are fully equivalent (and should be identified) iff they

are conjugate in Sp(2k,Z). However the dimension spectrum {∆i} depends only on the spectral

invariant S of the monodromy and hence only on its Sp(2k,R)-conjugacy class.
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11.1.3 The spectral invariant as a sign function

We focus on a m ∈ Sp(2k,Z) whose minimal polynomial is Q-irreducible,

det[z −m] = Φd(z)
s, s φ(d) = 2k, s ∈ N. (11.9)

We fix a primitive d-root, ζ, and write K ≡ Q[ζ] for the corresponding cyclotomic field and k =

Q[ζ + ζ−1] for its maximal totally real subfield, Gal(K/k) = {±1}.
Let ψα1 ∈ K (α = 1, . . . , s) be a basis of the ζ-eigenspace of the matrix m. Let σ ∈ Gal(K/Q) ∼=

(Z/dZ)×; then ψασ ≡ σ(ψα1 ) form a basis of the σ(ζ)-eigenspace. We write 〈ψα1 , ψ
β
−1〉 = tαβ ∈ K(s).

Without loss of generality, we may assume tαβ to be diagonal tαβ = tαδ
αβ with tα ∈ K. tα is odd

(i.e. purely imaginary) t̄α = −tα. The symplectic structure is given by a 2-form

2 Ω = i
∑
α

∑
σ∈Gal(K/Q)

σ(tα)ψα−σ ∧ ψασ . (11.10)

Thus m is the direct sum of s (possibly inequivalent) embeddings Zd → Sp(φ(d),R). For each

summand we define the odd sign (function)

signα : Gal(K/Q)→ {±1}, σ 7→ σ(tα)

i|σ(tα)|
. (11.11)

The spectral invariant of the α-th summand is

Sα ≡
{
ζσ
∣∣∣ σ ∈ Gal(K/Q) such that signα(σ) = +1

}
. (11.12)

It is obvious that Sα satisfies condition (11.8). We shall denote by the same symbol, Sα, both the

spectral invariant and the corresponding sing function. A semi-simple element m satisfying (11.9)

is regular iff the spectral invariant is the same for all its direct summands, i.e. Sα = Sβ.

Remark 11.1.2. For a single regular block with characteristic polynomial Φd(z) the number of

sub-sets S ⊂ {ζa : a ∈ (Z/dZ)×} satisfying condition (11.8) is 2φ(d)/2. However it is not true

(in general) that all such sub-sets (i.e. sign functions) are realized as spectral invariant of some

embedding Zd → Sp(φ(d),Z). For instance, for d = 12 we have 2φ(12)/2 = 4, but only 2 sign

functions are produced by actual embeddings. The set {S} of sign functions which do are realized

satisfies the obvious condition

σ 7→ sign(σ) ∈ {S} ⇒ σ 7→ sign(τσ) ∈ {S} ∀ τ ∈ Gal(K/Q). (11.13)

In particular if sign is realized −sign is also realized.

In §.10.5 that the list of possible Coulomb branch dimensions {∆1, · · · ,∆k} is determined from

the Sp(2k,R)-conjugacy classes of regular elements of Sp(2k,Z) (or the corresponding arithmetic

group for non principal polarizations) through their sign function invariant S. Then our main

problem at this point is to understand the set {S} of signs which do are realized for a given

polarization. This is the next task.
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11.2 Cyclic subgroups of integral matrix groups

In this section we review the theory of the embedding of cyclic groups into groups of matrices having

integral coefficients in a language convenient for our purposes (also providing explicit expressions

for the matrices). See also [186, 203]. Our basic goal is to describe the set {S} of signs which do

appear and more generally the regular elliptic elements of the Siegel modular group.

11.2.1 Embeddings Zn ↪→ GL(2k,Z) vs. fractional ideals

We focus on a single block, that is, we consider a matrix m ∈ GL(2k,Z) with minimal polynomial

Φn(z). Then 2k ≡ s φ(n) for some s ∈ N.

Notations. We fix once and for all a primitive n-root of unity ζ ∈ C, and write K ≡ Q[ζ] for the

n-th cyclotomic field, O ≡ Z[ζ] for its rings of integers, k ≡ Q[ζ+ζ−1] for its maximal real subfield,

and o ≡ Z[ζ + ζ−1] for the ring of algebraic integers in k. Gal(K/k) ∼= Z2, the non-trivial element

ι being complex conjugation, ι(x) = x̄. Gal(k/Q) ∼= (Z/nZ)×/{±1}. We write n̆ for the conductor

of the field K:

n̆ =

{
n if n 6= 2 mod 4

n/2 otherwise.
(11.14)

We write CK (Ck) for the group of ideal classes in K (resp. in k). N will denote the relative norm

K→ k extended to the groups of fractional ideals IK
N−→ I k in the usual way [121,188].

The embedding Zn ↪→ GL(2k,Z) makes Z2k into a finitely-generated torsion-less O-moduleM,

multiplication by ζ being given by m. Conversely, any finitely-generated torsion-less O-moduleM
defines an embedding Zn ↪→ GL(2k,Z) where 2k is the rank of M seen as a (free) Z-module. The

ring of cyclotomic integers O is a Dedekind domain. The following statement holds for all such

domains:

Proposition 11.2.1 (see [121]). A finitely-generated torsion-less module M over the Dedekind

domain O has the form a1 ⊕ a2 ⊕ · · · ⊕ as, where ai are fractional ideals in K. Two modules

a1 ⊕ a2 ⊕ · · · ⊕ as and b1 ⊕ b2 ⊕ · · · ⊕ bt are isomorphic if and only if s = t and the ideal class∏
i aib

−1
i is trivial. In particular we may always set M = O ⊕ · · · ⊕O ⊕ a ≡ (1)⊕(s−1) ⊕ a. Then

the class of a yields a one-to-one correspondence{
GL(2k,Z)-conjugacy classes of embeddings Zn ↪→ GL(2k,Z)

} 1-1←→ CK. (11.15)

In order to describe the explicit embeddings we sketch the proof in the special case s = 1.

Proof. Let a ⊂ K be a fractional ideal. In particular a is a torsion-free finitely generated Z-

module, hence a lattice isogeneous to O, and thus of rank 2k. Choosing generators, we may write

a =
⊕2k

a=1 Zωa, with ωa ∈ K. Now ζ ωa ∈ a, and hence there is an integral 2k × 2k matrix m such

that

ζωa = mab ωb. (11.16)

The minimal polynomial of m is the n-th cyclotomic polynomial, Φn(m) = 0. Thus the matrix m

yields an explicit embedding of Zn into GL(2k,Z). Had we chosen a different set of generators for
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a, ω′a, we would had gotten an integral matrix m′ which differs from m by conjugacy in GL(2k,Z).

Indeed, ω′a = Aab ωb, for some A ∈ GL(2k,Z). Thus the map a 7→ (conjugacy class of m) is

independent of all choices. By construction, the vector ω ≡ (ω1, · · · , ω2k) ∈ K2k is the eigenvector of

m associated to the eigenvalue ζ. The eigenvector associated to the eigenvalue σ(ζ), σ ∈ Gal(K/Q),

is the σ(ω).

Conversely, if m ∈ GL(2k,Z) with minimal polynomial Φn, consider an eigenvector ω ≡
(ω1, · · · , ω2k) ∈ K2k associated to the eigenvalue ζ, and set a =

⊕2k
a=1 Zωa. Clearly, if ω is such an

eigenvector so is µω for all µ ∈ K×. Hence a and (µ)a (µ ∈ K×) describe the same conjugacy class

of integral matrices m, that is, the conjugacy class of m depends only on the class of the fractional

ideal a in CK = IK/(K×).

The action of ζ on the module
⊕s

i=1 ai is unitary for the natural Hermitian form

〈ai, bi〉 =

s∑
i=1

TrK/Q(āibi). (11.17)

Remark 11.2.1. A O-module M gives a unitary representation of Zn on the associated C-space

VM =M⊗Z C which corresponds to the natural embedding GL(2k,Z) ⊂ GL(2k,C).

11.2.2 The dual embedding

Given an embedding of Zn ↪→ GL(2k,Z), generated by the integral matrix m, we have a second

embedding, the dual one, where the generator is represented by the integral matrix (mt)−1. If we

write the matrices in an unitary basis of VM (instead of an integral one), the two representations

of Zn are related by complex conjugation.

LetM =
⊕

i ai be an O-module associated to the embedding m as in Proposition 11.2.1; then

the dual O-module M∨ is associated to the dual embedding (mt)−1. M∨ is uniquely determined

up to isomorphism.

Lemma 11.2.1. M∨ =
⊕

i a
∗
i where a∗i is the dual ( a.k.a. complementary) fractional ideal of ai

(with respect to (11.17)). One has [142,176]

a∗i =
1

( Φ′n(ζ) ) āi
(11.18)

where Φ′n(z) is the derivative of Φn(z) and āi is the complex conjugate ideal of ai.

Note that

a∗∗ =

(
Φ′n(ζ)

Φ′n(ζ)

)
a = a, since

Φ′n(ζ)

Φ′n(ζ)
is a unit in O. (11.19)

In appendix B.1 we show a some properties of the map a → a∗ which greatly simplify the

computations. In particular:

Lemma 11.2.2. For all fractional ideal a of K we have

a∗ = %/ā, for a certain % ∈ K× with ι(%) = −%. (11.20)
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If n̆ is not the power of an odd prime, we may alternatively choose % to be real by multiplying it by

a purely imaginary unit, e.g. (ζ − ζ−1) for n̆ 6= 2r or i for n̆ = 2r .

11.2.3 Complex, real, quaternionic

At the level of underlying C-linear representations, VM ∼= V ∨M ≡ VM∨ . An anti -linear morphism

R : VM → VM∨ is said to be a real (resp. quaternionic) structure iff it squares to +1 (resp. −1) [46].

A real (resp. quaternionic) structure embeds the matrix m in the orthogonal (resp. symplectic)

group. To get an embedding Zn ↪→ Sp(2k,Z) we need a quaternionic structure defined over Z.

First of all, this requires M and M∨ to be isomorphic as O-modules. Writing M = (1)⊕(s−1) ⊕ a,

we must have

(1)⊕(s−1) ⊕ a ∼= (%)⊕(s−1) ⊕ % ā−1. (11.21)

which implies that

Na ·O = a ā =
(
η). (11.22)

Since the natural map Ck → CK, [b] 7→ [b ·O] is injective [177], the fractional ideal Na is principal

in k, that is, Na = (η) for some η ∈ k×.

From eqn.(11.21) we see that the construction of the embedding is essentially reduced to the

case s = 1. From now on we specialize to this case, so that M ≡ a, M∨ = a∗. Fix a Z-basis80

{ωa} of a and let φa be the dual basis of a∗, i.e. 〈ωa, φb〉 = δa
b. If a satisfies condition (11.22),

a∗ = %/ā = %η−1a, and we write

a∗ = λv a where λv = v%/η−1 with v a unit of O. (11.23)

Then {λv ωa} is also a Z-basis of the dual fractional ideal a∗ and there is a a matrix Jab ∈ GL(2k,Z)

(depending on the unit v) such that

λv ωa = Jab φ
b. (11.24)

One has

λ̄−1
v Jab = λ̄−1

v 〈Jacφc, ωb〉 = 〈ωa, ωb〉 = 〈ωa, Jbcφc〉λ−1 = Jba λ
−1
v (11.25)

i.e. the integral unimodular matrix Jab is skew-symmetric (resp. symmetric) if the unit v is such

that λv is purely imaginary (resp. real). In the first case Jab is a principal integral symplectic

structure, hence similar over Z to the standard one Ω, i.e. J = htΩh for some h ∈ GL(2k,Z). In

the second case J is a unimodular symmetric quadratic form. Thus for a fixed fractional ideal a,

we find a symplectic structure (i.e. an embedding in Sp(2k,Z)) per each choice of the unit v such

that λv is purely imaginary. We shall count the inequivalent ones in the next subsection.

Since η ∈ k× is always real, and % was chosen to be purely imaginary (cfr. Lemma 11.2.2)

Jab is skew-symmetric iff v is real, and symmetric iff it is purely imaginary. In particular, the two

obvious choices v = ±1, always produce embeddings Zn ↪→ Sp(2k,Z) (2k ≡ φ(n)).

80 That is, a set of generators of a seen as a free Z-module.
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11.2.4 Conjugacy classes of embeddings Zn ↪→ Sp(φ(n),Z)

Regular embeddings Zn ↪→ Sp(φ(n),Z) exist for all n ≥ 3. Indeed, the condition Na principal is

trivially satisfied if a itself is principal. Thus the trivial ideal class (1) yields regular embeddings

Zn ↪→ Sp(φ(n),Z) for all n ≥ 3. We proceed as follows: we fix an embedding (m,J) associated

to the ideal (1) and call it the reference embedding. All inequivalent embeddings are obtained by

acting on the reference one (m,J) with a certain Abelian group H defined in the next Proposition.

A subgroup of H is easy to describe: in eqn.(11.23) we may choose a different real unit v ∈ O and

still get an invariant quaternionic structure; this is the same as multiplying η ∈ k× by a unit

of o. In this way we get new (inequivalent) embeddings (m,J ′) for a given fractional ideal a:

they correspond to embeddings which are conjugate over GL(φ(n),Z) but not over the subgroup

Sp(φ(n),Z). On the other hand, under a → µa with µ ∈ K× we have η → η Nµ, hence the image

of η in the group k×/NK× is independent of the choice of the representative ideal a in the ideal

class. To describe also the embeddings belonging to different GL(φ(n),Z) conjugacy classes, it is

convenient to consider the group

L = ker
(
IK

N−→ Ck, a 7→ [Na]
)

(11.26)

of fractional ideal classes in K whose relative norm is principal in k. Then we have group

K =
{

(a, η) ∈ L× k× : Na = (η)
}

(11.27)

and the group homomorphism

π : K → CK × k×/NK×, (a, η) 7→ ([a], [η]). (11.28)

The above discussion shows the

Proposition 11.2.2 (see [186]). Let n ≥ 3. The (Abelian) group

H ≡ Imπ ⊂ CK × k×/NK× (11.29)

acts freely and transitively on the set of the Sp(φ(n),Z)-conjugacy classes of embeddings Zn ↪→
Sp(φ(n),Z). In particular, the number of Sp(φ(n),Z)-conjugacy classes is∣∣H∣∣ ≡ ∣∣ ker

(
CK

N−→ Ck
)∣∣× ∣∣u/NU ∣∣, (11.30)

where U (resp. u) is the group of unities of O (resp. o).

Let h = |CK| and h+ = |Ck| be the class numbers of the fields K and k, respectively. The map

N : CK → Ck is surjective [cite], and the ratio

h− = h/h+ =
∣∣ ker(CK

N−−→ Ck)
∣∣ (11.31)

is called the relative class number of K. h− is much easier to compute that either h or h+ (it

has an explicit expression in terms of generalized Bernoulli numbers [177, 245]). It turns out that

h− = 1 ⇔ h = h+ = 1 [245]. For n ≤ 22 the relative class number is h− = 1, while for large n we

125



have the asymptotic behavior [245]

log h− ∼ 1

4
φ(n) log n̆ n→∞. (11.32)

h− = 1 iff the conductor n̆ is one of the numbers [245]

n̆ =1, 3, 4, 5, 7, 8, 9, 11, 12, 13, 15, 16, 17, 19, 20, 21,

24, 25, 27, 28, 32, 33, 35, 36, 40, 44, 45, 48, 60, 84.
(11.33)

When h− = 1, all inequivalent embeddings Zn ↪→ Sp(φ(n),Z) arise from the same fractional ideal,

and hence are all conjugate in the larger group GL(φ(n),Z).

To compute the second factor in (11.30) we consider the group of units in the relevant fields.

Group of units. We write µ for the group generated by the roots of unity in K

µ =
{
± ζk

}
. (11.34)

The Hasse unit index Q of the cyclotomic field K is

Q ≡ [U : µu]. (11.35)

Proposition 11.2.3 (see [142]). Let K be a cyclotomic field of conductor n̆. One has

Q =

{
1 n̆ is a prime power

2 otherwise.
(11.36)

Moreover, U/(µu) ∼= NU/u2 and then

[NU : u2] = Q. (11.37)

In other words, if Q = 1 all {Nε : ε ∈ U} are squares in u, while for Q = 2 only half of them are

squares.

Remark 11.2.2. Let the conductor n̄ be divisible by two distinct primes. Let us describe explicitly

a generator of the group NU/u2 ∼= Z2. (1− ζ) is a unit in K, and

N(1− ζ) = 2− ζ − ζ−1 = 2(1− cos(2π/n)) = 4 sin2(π/n) ∈ k, (11.38)

while its square root 2 sin(π/n) is not in k. Hence, for n divisible by two distinct primes,

NU = N(1− ζ)a u2, a = 0, 1. (11.39)

In particular ε1 ≡ N(1− ζ) is a fundamental unit of k.

For n ≥ 3, let k = φ(n)/2. From Dirichlet unit theorem [121] we know that

u =
{
± εs11 ε

s2
2 · · · ε

sk−1

k−1 , sa ∈ Z
}

(11.40)
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where εa, a = 1, . . . , k − 1 are the real positive fundamental units. For Q = 1 we have

u/NU ∼= u/u2 =
{
± εs11 ε

s2
2 · · · ε

sk−1

k−1 , sa ∈ Z/2Z
}
∼= Zk2. (11.41)

while for Q = 2

u/NU ∼= u/
(
Z2 × u2

)
=
{
± εs22 · · · ε

sk−1

k−1 , sa ∈ Z/2Z
}
∼= Zk−1

2 . (11.42)

In conclusion,

Corollary 11.2.1. Let n ≥ 3. The number of Sp(φ(n),Z)-conjugacy classes of embeddings Zn ↪→
Sp(φ(n),Z) is

2φ(n)/2

Q
h− ≡ |µ|

∏
χ odd

(
−B1,χ), (11.43)

where Q = 1, 2 is the Hasse unit index, h− the relative class number of the cyclotomic field K, and

B1,χ the first Bernoulli number of the odd Dirichlet character χ.

However, to fully solve our problem we need to know also when two distinct conjugacy classes

are conjugate in the larger group Sp(φ(n),R) (or, equivalently, in Sp(φ(n),Q)).

11.2.5 Embeddings Zn ↪→ S(Ω̃)Z for Ω̃ non-principal

The symplectic matrix J defined in eqn.(11.24), for λv as in (11.23) (with v a unit of o), corresponds

to a principal polarization, i.e. J is an integral skew-symmetric matrix with det J = 1. Let 0 6= κ ∈ o

and consider the matrix Jκ defined by

Jκab φ
b = κλωa. (11.44)

If κ is a unit, Jκ is a principal-polarization. For κ just integer in k, Jκ is an integral skew-symmetric

matrix with determinat

det Jκ =
(
Nk/Q κ

)2
. (11.45)

11.2.6 Sp(φ(n),Q)-conjugacy classes

As we saw in §. 11.1.3, the Sp(φ(n),R)-conjugacy classes are distinguished by the sign of the

corresponding (integral) symplectic structure signσ. Then we need to understand the action of the

group of Sp(φ(n),Z)-conjugacy classes of embeddings, H, on the sign function which we see as a

map Gal(k/Q) → Z2. The set of such maps form a group isomorphic to Zφ(n)/2
2 . Then we have a

well-defined homomorphism of Abelian groups

s : H −→ Zφ(n)/2
2 , ([a], [η]) 7−→

{
sign([a],[η]) : σ 7→ σ(η)

|σ(η)|

}
(11.46)

An element ([a], [η]) ∈ H changes the Sp(φ(n),Z) conjugacy class of m without changing its

Sp(φ(n),R)-conjugacy class iff it belongs to the kernel of s, that is,

Corollary 11.2.2 (Midorikawa [186]). The group HR ≡ H/ ker s acts freely and transitively on the

Sp(φ(n),R)-conjugacy classes of embeddings Zn ↪→ Sp(φ(n),Z).
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An element η ∈ k× is said to be totally positive iff σ(η) > 0 for all σ ∈ Gal(k/Q); the set of all

totally positive elements k×+ ⊂ k× form a subgroup while (for n ≥ 3) [121]

k×+/k× ∼= Zφ(n)/2
2 . (11.47)

Comparing with eqn.(11.29), we see that

ker s = H
⋂(

CK × k×+/NK×
)
. (11.48)

The group of principal fractional ideals (η) with η ∈ k×+ is a subgroup of the group of all

principal fractional ideals. The quotient Ik/(k×+) is called the narrow-ideal class, Cnar
k . Likewise

we have the subgroup of totally positive units u+ ⊂ u; from the ray class exact sequence [121,189]

1→ u/u+ → Zφ(n)/2
2 → Cnar

k /Ck → 1, (11.49)

we get u/u+
∼= Zφ(n)/2−a

2 , Cnar
k /Ck ∼= Za2 for some 0 ≤ a ≤ φ(n)/2− 1 (a ≥ 1 when Q = 2). Then∣∣ ker s

∣∣ =
∣∣ ker

(
CK

N−−→ Cnar
k
)∣∣× ∣∣u+/NU

∣∣, (11.50)

and the number of Sp(φ(n),R)-conjugacy classes of embeddings Zn ↪→ Sp(φ(n),Z) (i.e. the number

of possible sign assignments in the integral symplectic structure is

∣∣HR
∣∣ =

| ker(CK
N−→ Ck)|

| ker(CK
N−→ Cnar

k )|
·
∣∣u/u+

∣∣. (11.51)

Hence ker(CK
N−→ Ck)/ ker(CK

N−→ Cnar
k ) ∼= Zb2, with b ≤ a while u/u+

∼= Zφ(n)/2−a
2 and

HR ∼= Zφ(n)/2+(b−a)
2 (11.52)

so that the number of Sp(φ(n),R) inequivalent embeddings is 2φ(n)/2+(b−a) ≤ 2φ(n)/2.

Corollary 11.2.3. Let the class number of K, hK, be odd. Then

HR ∼= u/u+
∼= Zφ(n)/2−a

2 , b = 0. (11.53)

From eqn.(11.52) we see that if b < a not all signatures of the symplectic structure may be

realized. Indeed, from eqn.(11.49) we see that all signatures are realized iff the kernel of the

natural map Cnar
k → Ck is contained in the image of N . We mention a few known facts on a:

a) (Weber) if n = 2r, u+ = u2, that is, a = 0;

b) (Kummer, Shimura [200, 233]) if n̆ is a prime, a = 0 if and only if the class number of K is

odd;

c) of course a > 0 if n̆ is divisible by two distinct primes.

Thus, for instance, if hK is odd and n̆ composite 6= 2r, not all signs of the symplectic form are

realizable.
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Remark 11.2.3. If hK = 2 we have H ∼= Z2×u/NU , since we must have81 hk = 1; if (in addition)

n̆ is not a prime power, H ∼= Z1+φ(n)/2−1
2

∼= Zφ(n)/2
2 . This happens e.g. for n = 39, 56, 78. For

these three instances the conductor is divisible by just two distinct primes, and hence (by a result

of Sinnott [236]) u coincides with the group of cyclotomic units.

11.2.7 The sign function

From (11.25) we see that the sign function is

sign : σ 7→ σ(λv)

i|σ(λv)|
=

σ(%)

i|σ(%)|
· σ(η)

|σ(η)|
. (11.54)

Comparing eqn.(11.44) with eqn.(11.47), we conclude

Corollary 11.2.4. All sign functions (i.e. all spectral invariants) are realized for some arithmetic

embedding Zn ↪→ Sp(Ω̃,Z) with Ω̃ a non-necessarily principal polarization.

A few examples are in order. We have seen above that if

(∗∗) hK is odd and the conductor n̆ is either a power of 2 or an odd prime (11.55)

then all 2φ(n̆)/2 signs are realized with Ω principal. Let us consider the first few n’s which do not

satisfy these condition (∗∗). The first one is 9.

Example 36. n = 9 In this case hK = Q = 1 so there are 2φ(n)/2 = 8 distinct Sp(6,Z)-conjugacy

classes of order 9 elements. Since 9 is a prime power, u is the group of the the real cyclotomic

units, that is,

u = ±(ζ + ζ8)Z (ζ4 + ζ5) ≡ ±uZ vZ. (11.56)

The sign table for the three elements σa ∈ Gal(k/Q) are

σ1 σ2 σ4

u + + −

v − + +

(11.57)

Thus u/u+
∼= Z3

2
∼= u/NU ; hence all Sp(6,Z)-conjugacy classes are distinct as Sp(6,R)-conjugacy

classes and all 8 signs are realized (cfr. also [111]).

Example 37. n = 12 In this case hK = 1 and Q = 2, so we have only 2φ(12)/2/Q = 2 inequivalent

embeddings over Sp(4,Z). They correspond to η = ±1. One has

Φ′12(e2πi/12) = 2
√

3 e−2πi/3, (11.58)

so as % we may choose

− i e−2πi/3/(2
√

3 e−2πi/3) ≡ −i/(2
√

3) =
1

2(ζ4 − ζ−4)
. (11.59)

81 Indeed, 2 | hk ⇒ 2 | h− [cite] so that 2 | hk ⇒ 4 | hK.
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Thus for n = 12 the sign function is

(Z/12Z)× → {±1},

a 7→ ia−1,
i.e.

1 7→ −1, 5 7→ +1,

7 7→ −1, 11 7→ +1.
(11.60)

The group of units of k ≡ Q[
√

3] is u = ±(2 −
√

3)Z, and u/u+
∼= {±1}. Thus only two spectral

invariants out of four are realized by embeddings Z12 → Sp(4,Z) (as expected) namely {ζ, ζ7} and

{ζ5, ζ11} (where ζ = e2πi/12).

Remark 11.2.4. Since the ST group G8 has degrees {12, 8}, according to the dimension formulae

of section 4, its elements of order 12 should have an embedding with spectral invariant {ζ, ζ5}. We

saw in §. 6.2 (Example 5) that the G8-invariant polarization has det Ω̃ = 22. This polarization

has the form in §. 11.2.5 with κ = 1 +
√

3 ∈ o which is not totally positive (its norm is negative)

Nk/Q(1 +
√

3) = −2. This illustrates Corollary 11.2.4.

Example 38. n = 15 Again hK = 1 and we have 2φ(15)/2/Q = 8 different Sp(8,Z)-conjugacy

classes. We have (ζ ≡ e2πi/15)

Φ′15(ζ) = 15
ζ−1(ζ − 1)

(ζ5 − 1)(ζ3 − 1)
we choose % = − 1

15
ζ3(ζ2 − 1)(ζ10 − 1)(ζ12 − 1), (11.61)

and then the signs of the reference embedding are

σa(%)

i |σa(%)|
=

{
+1 a = 1, 2

−1 a = 4, 7

spectral inv.−−−−−−−−→ {ζ, ζ2, ζ8, ζ11}. (11.62)

Writing ξ = ζ + ζ−1, we have (according to Mathematica)

u = ±(−1 + 3ξ − ξ3)Z (2 + 3ξ − ξ2 − ξ3)Z (−1 + 4ξ − ξ3)Z = ±uZ1 uZ2 uZ3 , (11.63)

whose signs are

σ1 σ2 σ4 σ7

u1 − + − +

u2 − + + −

u3 + + − −

(11.64)

so that u/u+
∼= Z3

2, i.e. all Sp(8,Z) classes correspond to Sp(8,R) classes, with signs:

{+ +−−}, {−+ +−}, {−+−+}, {+ + ++}, {− −++}, {+−−+}, {+−+−}, {− −−−},

that is, the spectral invariants

{ζ, ζ2, ζ11, ζ8}, {ζ14, ζ2, ζ4, ζ8}, {ζ14, ζ2, ζ11, ζ7}, {ζ, ζ2, ζ4, ζ7},
{ζ14, ζ13, ζ4, ζ7}, {ζ, ζ13, ζ11, ζ7}, {ζ, ζ13, ζ4, ζ8}, {ζ14, ζ13, ζ11, ζ8}.

(11.65)

Example 39. n = 20 Again hK = 1 and we have 2φ(20)/2/Q = 8 different Sp(8,Z)-conjugacy
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classes. We have (ζ ≡ e2πi/20)

Φ′20 =
10 ζ8

ζ + ζ−1
we choose % =

1

10
(ζ + ζ−1)ζ5. (11.66)

Then

σa(%)

i |σa(%)|
=

{
+1 a = 1, 7

−1 a = 3, 9

spectral inv.−−−−−−−−→ {ζ, ζ17, ζ7, ζ11}. (11.67)

Again, with ξ = ζ + ζ−1

u = ±(1 + ξ)Z (2− ξ2)Z (1− 3ξ + ξ3)Z = ±uZ1 uZ2 uZ3 , (11.68)

with signs

σ1 σ3 σ7 σ9

u1 + + − −

u2 − + + −

u3 + − + −

(11.69)

so, again u/u+
∼= Z3

2 and Sp(8,Z) and Sp(8,R) conjugacy classes coincide.

Example 40. n = 21 Again hK = 1 and we have 2φ(21)/2/Q = 32 different Sp(12,Z)-conjugacy

classes. We have (ζ ≡ e2πi/21)

Φ′21(ζ) = 21
ζ−1(ζ − 1)

(ζ7 − 1)(ζ3 − 1)
we choose % = − 1

21
ζ9(ζ2 − 1)(ζ14 − 1)(ζ18 − 1), (11.70)

and then the signs of the reference embedding are

σa(%)

i |σa(%)|
=

{
+1 a = 1

−1 a = 2, 4, 5, 8, 10

spectral inv.−−−−−−−−→ {ζ, ζ19, ζ17, ζ16, ζ13, ζ11}. (11.71)

Writing ξ = ζ + ζ−1, we have (according to Mathematica)

u = ±ξZ (2− ξ2)Z (2− 4ξ2 + ξ4)Z (3− 8ξ − ξ2 + 6ξ3 − ξ5)Z (2− 5ξ − ξ2 + 5ξ3 − ξ5)Z

= ±uZ1 uZ2 uZ3 uZ4 uZ5 ,
(11.72)

whose signs are

σ1 σ2 σ4 σ5 σ8 σ10

u1 + + + + − −

u2 − − + + − −

u3 + − + + − +

u4 + + − + + −

u5 − + − + − −

(11.73)
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so that u1u2u3u4u5 ∈ u+ and u/u+
∼= Zφ(21)/2−1

2 ≡ Z5
2, and only 32 out of the possible 64 signs

are actually realized. The allowed spectral invariants may be read from the above tables.

11.3 Explicit matrices

We now write explicitly the integral matrices yielding a reference embedding Zn ↪→ Sp(φ(n),Z) on

which we act with the groups H or HR to get the inequivalent embeddings over Sp(φ(n),Z) and

Sp(φ(n),R), respectively.

Let a be a fractional ideal of K such that Na = (η), η ∈ k×. We write k = φ(n)/2 and choose

generators of the free Z-module a, a =
⊕2k

a=1 Zωa. Define the dual vector (φa) ∈ K2k by the

condition

TrK/Q
(
ωa φ̄

b
)

= δa
b. (11.74)

By definition, the dual ideal is a∗ =
⊕2k

a=1 Zφa. Since a∗ = λa with λ purely imaginary (cfr.

eqn.(11.23)), there exists Λ ∈ GL(2k,Z) such that

Λabωb = λ−1φb, Λbaφ
b = λ̄ωa, (11.75)

where Λab is the inverse of Λab; the second equation being a consequence of the first in view of

(11.74)). Then

((Λt)−1Λ)a
b
ωb = λ−1λ̄ ωa = −ωa, (11.76)

and the integral matrix Λ is antisymmetric with determinant 1, hence similar over the integers to

the standard symplectic matrix Ω.

Each ideal class [a] ∈ C−K = ker(CK
N−−→ Ck) yields an embedding Zn → GL(2k,Z) which is

quaternionic with respect to 2k/Q inequivalent (over Z) symplectic structures. To get the reference

embedding, let us consider the trivial class in C−K ; as a representative ideal we take O ≡ (1) itself.

As a Z-basis of O we take ωx = ζx−1 with x = 1, . . . , 2k. It is convenient to re-label the elements

of this basis. Let n = pr11 p
r2
2 · · · prss be the prime decomposition of n. Choose primitive prii -th roots

of 1, ζi. Then ζ =
∏
i ζi is a primitive n-th root. By the Chinese remainder theorem, there exist

integers ei, i = 1, . . . , s, such that

ei = δij mod p
rj
j ∀ i, j = 1, . . . , s. (11.77)

We write the index x = 1, 2, . . . , 2k uniquely as

x− 1 =
∑
i

ei
(
(ai − 1)pri−1 + (αi − 1)

)
with ai = 1, . . . , pi − 1 and αi ∈ Z/pri−1

i Z.
(11.78)

Then the basis ζx−1 is re-written as a tensor product over the primes pi | n

ωaiαi =
∏
i

ζ
p
ri−1
i (ai−1)+(αi−1)
i , ωaα =

s⊗
i=1

(ωi)aiαi (11.79)
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It is convenient to realize the action of m as multiplication by a different primitive n-root

ζ ′ =
∏
i

ζ
p
ri−1
i +1
i . (11.80)

With these conventions, the action of Zn ∼=
∏
i Zprii explicitly factorizes in the product of the action

of the factor groups Zprii

ζ ′ ωaα =
s⊗
i=1

(mi)aiαi
bjβj ωbjβj that is m =

s⊗
i=1

mi. (11.81)

We have to discuss separately the matrices mi associated to an odd prime and the one associated

to 2 (if present). For pi odd, each mi factorizes in the matrix m(p) yielding the reference embedding

Zp → GL(p− 1,Z) times the pri−1
i -circulant

mi = m(pi) ⊗ Cpi,ri , (11.82)

where m(p) (resp. Cp,r) is the (p− 1)× (p− 1) matrix (resp. pr−1 × pr−1)

m(p) =


0 1
...

. . .

0 1

−1 −1 · · · −1

 , Cp,r =


0 1
...

. . .

0 1

1 0 · · · 0

 (11.83)

For p1 = 2, m1 is just the scalar −1 for r1 = 1. For r1 ≥ 2, m1 is the tensor product of the 2 × 2

matrix m(2) yielding the embedding Z4 → GL(2,Z) (the 2 × 2 matrix of the form on the left of

(11.83)) with the 2r1−2-circulant.

Likewise, the Hermitian structure factorizes

TrK/Q
(
ωaiαi ω̄bi,βi

)
=
∏
i

(
pri−1
i Ti,aibi δ

(p
ri−1
i )

αiβi

)
. (11.84)

where

Ti,ab = pi δab − vavb, va = (1, 1, . . . , 1), δ
(`)
αβ =

{
1 α ≡ β mod `

0 otherwise,
(11.85)

and we used [54]

TrK/Q
(
ζt
)
≡

∑
`∈(Z/nZ)×

ζ`t =
φ(n)

φ(n/(n, t))
µ(n/(n, t)), (11.86)

where µ(x) is the Möbius function. Let ζi be the primitive pri we have chosen and set ξi = ζ
p
ri−1
i
i

(a primitive p-root). We write

ωai αii = (ξai−1
i − ξ−1

i )ζαi−1
i (11.87)
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The dual basis of ωaα (cfr. (11.79)) is

φaα =
1

n

s⊗
i=1

(ωi)
ai αi . (11.88)

Using the reference % described in appendix B.1, for s odd the symplectic matrix Λ of our reference

embedding, is simply the tensor product of the reference symplectic matrices Λi for each prime pi|n,

Λ =
⊗

i Λi; for pi odd

Λi = Ui ⊗ 1
p
ri−1
i

, Ui =

 0 −Ji
J ti 0

 where Ji is the (pi − 1)/2× (pi − 1)/2

Jordan block of eigenvalue −1,
(11.89)

while for p1 = 2 we have Λ1 = 1 if r1 = 1 and otherwise

Λ1 =

 0 1

−1 0

⊗ 1r1−2. (11.90)

To set this matrix in the standard form Ω, it suffices to replace the above Z-basis with the Z-basis

s⊗
i=1

(ω̃i)ai,αi where ω̃ai,αi =

{
ωai,αi 1 ≤ ai < pi/2

φai,αi pi/2 < ai < pi.
(11.91)

Therefore, for s odd the reference embedding Zn ∼=
∏s
i=1 Zprii in Sp(φ(n),Z) is simply the tensor

product of the embeddings of the factor groups Zprii → Sp(φ(prii ,Z).

For s even the above tensor product produces an orthogonal rather than a symplectic embedding

since
⊗

i Λi is symmetric; to get an antisymmetric pairing, we multiply it by the reference imaginary

unit of Lemma B.1.2. We get

Λ =

{
mn/4

⊗s
i=1 Λi 4 | n

(m−m−1)
⊗s

i=1 Λi otherwise.
(11.92)

One checks that

mΛmt = Λ. (11.93)

This completes the explicit description of the reference embedding. Now we act with the group H

on it to get all other inequivalent embeddings.

Multiplying by an element of u/NU . This subgroup of H does not change the matrix m but

only the symplectic matrix Λ. Since o = Z[ζ+ζ−1], each element of v ∈ u/NU may be represented

by a polynomial

pv(ζ + ζ−1) =

φ(n)/2−1∑
i=0

c(v)i(ζ + ζ−1)i with c(v)i ∈ Z. (11.94)
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Then the change in the matrix Λ produced by multiplication by v is simply

Λ→ Λv ≡ pv(m+m−1) Λ = Λ pv(m+m−1)t =⇒ mΛvm
t = Λv. (11.95)

Replacing (1) with a non-principal fractional ideal. In a Dedekind domain O, an ideal a

which is not principal may be generated by two elements, that is, has the form

a = xO + yO, x, y ∈ O. (11.96)

Let ωa a Z-basis of O and $a a Z=basis of a. There are integral matrices X, Y such that

xωa = Xa
b$b, y ωa = Ya

b$b. (11.97)

The matrix M yielding the action of ζ ′ in the basis $a is M = X−1mX = Y −1mY . The condition

that Na is principal then implies that the induced Λ is defined over Z.

11.4 Reducible minimal polynomial

For completeness, we give some additional details on the case that the minimal polynomial of the

elliptic element m ∈ Sp(2k,Z) is reducible over Q

M(z) = Φd(z) Φn(z), n > d. (11.98)

If n/d is not a prime power, all embeddings are conjugate to a block-diagonal one md ⊕mn, see

Lemma 11.1.1. Suppose that n/d = pr with p prime while (d, p) = 1. We still have the block-

diagonal embeddings, and all embeddings are conjugate to block-diagonal ones over Q. Thus there

is an element R ∈ Sp(2k,Q) which splits the Z[m]-module V and the symplectic structure

R−1V = a⊕ b with a ∈ IQ[ζn], b ∈ IQ[ζd],

R−1mR acts as as multiplication by ζn × ζd,
Rt ΩR = Jn ⊕ Jd.

(11.99)

R must have the form

R =

(φ(n)+φ(d))/2−1∑
s=0

as
(
m+m−1

)s
, as ∈ Z (11.100)

for certain coefficients as.

12 Tables of dimensions for small k

In this section we present some sample tables of both dimensions and dimension k-tuples for small

values of the rank k.
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12.1 New-dimension lists for k ≤ 13

In table 14 we list the new-dimension sets N(k), for ranks 1 ≤ k ≤ 13. They have been computed

using the defining formula:

N(k) :=

{
l

s
∈ Q≥1 : φ(l) = 2k, (l, s) = 1

}
. (12.1)

The set of dimensions allowed in rank k is contained in the set

Ξ̂(k) =
k⋃
`=1

N(k). (12.2)

From eqns.(10.84)(10.87), the cardinalities of the new-dimension sets N(k) are:

k 1 2 3 4 5 6 7 8 9 10 11 12 13

|N(k)| 2+6 16 24 40 20 72 0 96 72 100 44 240 0

|N(k)|int 2+3 4 4 5 2 6 0 6 4 5 2 10 0

(12.3)

12.2 Dimension k-tuples: USE OF THE TABLES

Tables of all ALLOWED dimension k-tuples become quite long pretty soon as we increase k. For

conciseness we list only the strongly regular dimension k-tuples from which one can infer

all allowed k-tuples. The tables of strongly regular k-tuples contain the basic informations

needed to check whether a proposed dimension k-tuple {∆1, · · · ,∆k} is consistent or not with the

arguments of the present section. By definition, a strongly regular dimension k-tuples is a set

of dimensions as computed using eqn.(10.51) along a normal ray M∗ ⊂ M with strongly regular

monodromy m∗ (i.e. such that the characteristic polynomial of m∗ is square-free). In turn, the

strongly regular monodromies may be distinguished in two kinds: the ones consistent with a

principal polarization, m∗ ∈ Sp(2k,Z), and those associated to a suitable non principal polarization,

m∗ ∈ S(Ω)Z (det Ω 6= 1). The complete list of all allowed dimension k-tuples is then recovered

from the tables of the strongly regular ones by the algorithm described in section 4.5.1 which

we review in the next subsection.

In tables 15, 16, and 17 we present the list of the strongly regular dimension k-tuples for k = 3

and k = 4. For k = 3 we list both the principal (table 15) and non-principal 3-tuples (table 16),

while for k = 4 we limit ourselves to the principal ones (table 17).

12.2.1 The algorithm to check admissibility of a given dimension k-tuple

Suppose we are given a would-be dimension k-tuple, {∆1, · · · ,∆k}, written in non-increasing order

∆i ≥ ∆i+1, and we wish to determine whether it is consistent with the geometric conditions

discussed in the present thesis. In order to answer the question, we focus on the k normal rays in

the Coulomb branch

Mi =
{
uj = 0 for i 6= j

}
⊂M, i = 1, 2, . . . , k. (12.4)
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The monodromy along Mi, mi, may be either regular or irregular. From a regular monodromy

mi we may read all k dimensions using the Universal Formula (10.51). Experience with explicit

examples (e.g. the ones having constant period map or those engineered in F -theory) suggests that

the ray M1 associated with the chiral operator u1 of largest dimension ∆1 = maxi ∆i always has a

regular monodromy.82 However m1 may be just weakly regular; in this case eqn.(10.51) still applies

but the corresponding k-tuple is not listed in the tables, and we need to follow the procedure

described below. Recall that we have defined the regular rank kreg, 1 ≤ k of the monodromy matrix

m1 to be one-half the degree of the square-free part of its characteristic polynomial.

To run the algorithm, one begins writing the rational number ∆1 in minimal form, ∆1 ≡ n1/r1

with (n1, r1) = 1; we may assume n1 > 2 by the argument in §.10.3.2. Let `1 be the largest integer

such that ∆`1 = ∆1, that is, the multiplicity of the largest dimension. ∆1 is a new-dimension in

some rank k1 = 1
2φ(n1) and k1`1 ≤ k. If k1 = k, the monodromy m1 is automatically strongly

regular, and hence the full k-tuple should appear in the tables of strongly regular k-tuples under

the characteristic polynomial (C.P.) Φn1 . More generally, if k1`1 = k, the dimension k-tuple is the

union of `1 strongly regular dimension k1-tuples for Φn1 . If `1k1 < k, the k-tuple is the union of `1
strongly regular k1-tuples and a residual (k − `1k1)-tuple {∆i}i∈A1 (A1 ⊂ {1, . . . , k}). Under the

assumption that m1 is (weakly) regular we have

βi =
∆i − 1

∆1
, i ∈ A1, (12.5)

Let si ∈ N be the order of βi in Q/Z. The multiplicity `(s) of each integer s ∈ N in {si}i∈A1

should be an integral multiple of φ(s)/2, and {βi}i∈A1 ∪ {1 − βi}i∈A1 should consist in the union

of 2`(si)/φ(si) copies of each set B(si) = {si/r, (si, r) = 1, 1 < r < si}. This corresponds to a

characteristic polynomial

det[z −m1] = Φn1(z)`1
∏
s∈N

Φs(z)
2`(s)/φ(s). (12.6)

If our candidate k-tuple satisfies all these requirements at the ray M1, we next consider consistency

conditions at the rays M2, M3, etc. along the lines of §.10.3.7. The arguments are parallel to the

ones for M1 except that now we do not expect the monodromy to be fully regular (not even in the

weak sense) so that only a sub kreg, i-tuple of dimensions is fixed at each ray. This still yields non

trivial consistency conditions as in the examples of §.10.3.7.

The algorithm is longer to explain than to run. We illustrate the method in a typical example.

Example 41. In rank 4 the following (non strongly regular) 4-tuple exists83

{
14, 10, 8, 4

}
. (12.7)

Let us apply the procedure to it. The largest dimension, ∆1 = 14 has multiplicity 1 and is a rank 3

new-dimension (see table 14); then 3 out of the 4 dimensions (12.7) should form a strongly regular

3-tuple to be found in table 15 under Φ14. Indeed, there we find {14, 10, 4}. The set of residual

82 If there are ` > 1 chiral generators of largest dimension, we have a P`−1 family of normal rays associated to this
dimension. In this case the expectation is that the generic ray in the family has regular monodromy.

83 We thank Jacques Distler for suggesting this example.
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dimensions is {8} (i.e. A1 = {3}) and

β3 =
7

14
≡ 1

2
, s3 = 2, 2`(s3)/φ(2) ≡ 2, (12.8)

so that the 4-tuple (12.7) is consistent with m1 being weakly regular with

det[z −m1] = Φ14(z) Φ2(z)2. (12.9)

Next we consider the second dimension ∆2 = 10. From table 14 we see that it is a rank 2 new-

dimension, hence we expect that two out of the four dimensions (12.7) form a regular 2-tuple of the

form {10, ∗}. Indeed in table 11 we find both {10, 8} and {10, 4}. ∆3 = 8 is a rank 2 new-dimension,

and {8, 4} is a regular 2-tuple. Finally ∆4 = 4 is a rank 1 new-dimension (and hence a regular

1-tuple). Thus the 4-tuple (12.7) satisfies all the requirements.

12.3 Constructions of the lists

The procedure to determine the lists is the one explained in sections 4, 5 which we sum up here. We

start by computing ρ in the case of a cyclic group with an indecomposable characteristic polynomial

Φ(z). We start the algorithm with

ρtemp :=
1

Φ̄(ξ)′
. (12.10)

If ρtemp is purely imaginary, then ρ = ρtemp, otherwise we find the unit u such that uρtemp is purely

imaginary.84 Once ρ is computed, we get the initial signs for each element σi of the Galois group

associated to Φ(z). From the positive signs we compute the dimension tuple. All the other signs

can be computed exploiting the fundamental units of the cyclotomic field (using Mathematica

or PARI [209] when the former software fails): to each generator of the unit group we associate a

sign tuple (the signs of the Galois elements). From the signs of ρ, it is easy to compute all possible

signs by repeatedly multiplying the sings amongst one another. This is the algorithm to get all

dimensions tuples.

The embedding may be obtained by a direct sum of lower order cyclic elements. In this case,

we get the product of cyclotomic polynomials

Φd1,d2,··· ,ds(z) := Φd1(z) · · · Φds(z). (12.11)

The procedure is similar to the above: we first compute all the signs separately for each factor –

using the above algorithm – and then we put them all together to compute the full list of dimensions.

Particular attention must be payed to those products in which the ratio of the conductors of the

cyclotomic factors is a (power of a) prime number, e.g. Φ12Φ4 in the rank 3 case. In this situation,

the cyclic group representation is no longer irreducible, and thus the theory of Dedekind domains of

rank 1 cannot be applied: ρ is no longer a number but rather a matrix. Since this branch of number

theory is not well developed, we preferred the explicit construction of the symplectic matrices Λ’s.

We only consider the action of the group H = u/NU on the initial embedding, whose signs are still

defined by those of ρ (the corresponding matrix shall be called m and is given in subsection 11.3).

84 This algorithm exploits the fact that the group of units has a finite number of generators (called fundamental
units).
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The action of H only modifies the symplectic matrix: the signs of the characteristic polynomial of

the new symplectic matrix, evaluated at the cyclotomic roots, give the sign changes to be applied

to the original signs of ρ. Hence, the problem is to find the group H. It is a very had task to find

this group: fortunately we know how it acts on the symplectic matrices:

Λv := pv(m+m−1)Λ, ∀ v ∈ H, (12.12)

where pv is a polynomial with integer coefficients of maximal rank φ(n)− 1. Thus, we can write an

algorithm that looks for as many pv’s as possible: every time we find one we check whether Λv is

principal (i.e. of unit determinant) and symplectic; once these two conditions are matched, we add

the sign tuple to our results. In the end, we compute all the dimensions starting from the signs of

ρ and we multiply the signs with those explicitly found by our algorithm. If we find all possible

signs, then the final result is definitive. In general, if we do not find all signs, we can only state our

results with high confidence.

In table 15 we list the fully regular 3-tuples for k = 3. The first column yields the characteristic

polynomial of the embedding and the second column the corresponding dimension 3-tuples.

Table 17 contains the fully regular 4-tuples for k = 4.
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Table 14: New-dimension sets for ranks 1 ≤ k ≤ 13.

Rank k N(k)

1 1, 2, 3, 3
2 , 4,

4
3 , 6,

6
5

2 12
11 ,

10
9 ,

8
7 ,

5
4 ,

10
7 ,

8
5 ,

5
3 ,

12
7 ,

12
5 ,

5
2 ,

8
3 ,

10
3 , 5, 8, 10, 12

3 18
17 ,

14
13 ,

9
8 ,

7
6 ,

14
11 ,

9
7 ,

18
13 ,

7
5 ,

14
9 ,

18
11 ,

7
4 ,

9
5 ,

9
4 ,

7
3 ,

18
7 ,

14
5 ,

7
2 ,

18
5 ,

9
2 ,

14
3 , 7, 9, 14, 18

4 30
29 ,

24
23 ,

20
19 ,

16
15 ,

15
14 ,

15
13 ,

20
17 ,

16
13 ,

24
19 ,

30
23 ,

15
11 ,

24
17 ,

16
11 ,

20
13 ,

30
19 ,

30
17 ,

16
9 ,

20
11 ,

24
13 ,

15
8 ,

15
7 ,

24
11 ,

20
9 ,

16
7 ,

30
13 ,

30
11 ,

20
7 ,

16
5 ,

24
7 ,

15
4 ,

30
7 ,

24
5 ,

16
3 ,

20
3 ,

15
2 , 15, 16, 20, 24, 30

5 22
21 ,

11
10 ,

22
19 ,

11
9 ,

22
17 ,

11
8 ,

22
15 ,

11
7 ,

22
13 ,

11
6 ,

11
5 ,

22
9 ,

11
4 ,

22
7 ,

11
3 ,

22
5 ,

11
2 ,

22
3 , 11, 22

6 42
41 ,

36
35 ,

28
27 ,

26
25 ,

21
20 ,

13
12 ,

21
19 ,

28
25 ,

26
23 ,

42
37 ,

36
31 ,

13
11 ,

28
23 ,

21
17 ,

26
21 ,

36
29 ,

13
10 ,

21
16 ,

42
31 ,

26
19 ,

36
25 ,

13
9 ,

42
29 ,

28
19 ,

26
17 ,

36
23 ,

21
13 ,

13
8 ,

28
17 ,

42
25 ,

26
15 ,

42
23 ,

13
7 ,

28
15 ,

36
19 ,

21
11 ,

21
10 ,

36
17 ,

28
13 ,

13
6 ,

42
19 ,

26
11 ,

42
17 ,

28
11 ,

13
5 ,

21
8 ,

36
13 ,

26
9 ,

28
9 ,

42
13 ,

13
4 ,

36
11 ,

26
7 ,

42
11 ,

21
5 ,

13
3 ,

36
7 ,

26
5 ,

21
4 ,

28
5 ,

13
2 ,

36
5 ,

42
5 ,

26
3 ,

28
3 ,

21
2 ,

13, 21, 26, 28, 36, 42

7 None

8 60
59 ,

48
47 ,

40
39 ,

34
33 ,

32
31 ,

17
16 ,

40
37 ,

34
31 ,

32
29 ,

48
43 ,

60
53 ,

17
15 ,

48
41 ,

34
29 ,

32
27 ,

40
33 ,

17
14 ,

60
49 ,

34
27 ,

60
47 ,

32
25 ,

40
31 ,

48
37 ,

17
13 ,

34
25 ,

48
35 ,

40
29 ,

32
23 ,

60
43 ,

17
12 ,

60
41 ,

34
23 ,

40
27 ,

32
21 ,

17
11 ,

48
31 ,

34
21 ,

60
37 ,

48
29 ,

32
19 ,

17
10 ,

40
23 ,

34
19 ,

32
17 ,

17
9 ,

40
21 ,

48
25 ,

60
31 ,

60
29 ,

48
23 ,

40
19 ,

17
8 ,

32
15 ,

34
15 ,

40
17 ,

17
7 ,

32
13 ,

48
19 ,

60
23 ,

34
13 ,

48
17 ,

17
6 ,

32
11 ,

40
13 ,

34
11 ,

60
19 ,

17
5 ,

60
17 ,

32
9 ,

40
11 ,

48
13 ,

34
9 ,

17
4 ,

48
11 ,

40
9 ,

32
7 ,

60
13 ,

34
7 ,

60
11 ,

17
3 ,

40
7 ,

32
5 ,

34
5 ,

48
7 ,

17
2 ,

60
7 ,

48
5 ,

32
3 ,

34
3 ,

40
3 , 17, 32, 34, 40, 48, 60

9 54
53 ,

38
37 ,

27
26 ,

19
18 ,

27
25 ,

38
35 ,

54
49 ,

19
17 ,

54
47 ,

38
33 ,

27
23 ,

19
16 ,

38
31 ,

27
22 ,

54
43 ,

19
15 ,

38
29 ,

54
41 ,

27
20 ,

19
14 ,

38
27 ,

27
19 ,

54
37 ,

19
13 ,

38
25 ,

54
35 ,

19
12 ,

27
17 ,

38
23 ,

27
16 ,

19
11 ,

54
31 ,

38
21 ,

54
29 ,

19
10 ,

27
14 ,

27
13 ,

19
9 ,

54
25 ,

38
17 ,

54
23 ,

19
8 ,

27
11 ,

38
15 ,

27
10 ,

19
7 ,

54
19 ,

38
13 ,

19
6 ,

54
17 ,

27
8 ,

38
11 ,

19
5 ,

27
7 ,

54
13 ,

38
9 ,

19
4 ,

54
11 ,

27
5 ,

38
7 ,

19
3 ,

27
4 ,

38
5 ,

54
7 ,

19
2 ,

54
5 ,

38
3 ,

27
2 , 19, 27, 38, 54

10 66
65 ,

50
49 ,

44
43 ,

33
32 ,

25
24 ,

50
47 ,

33
31 ,

44
41 ,

66
61 ,

25
23 ,

66
59 ,

44
39 ,

25
22 ,

33
29 ,

50
43 ,

33
28 ,

44
37 ,

25
21 ,

50
41 ,

66
53 ,

44
35 ,

33
26 ,

50
39 ,

25
19 ,

33
25 ,

66
49 ,

50
37 ,

25
18 ,

66
47 ,

44
31 ,

33
23 ,

25
17 ,

50
33 ,

44
29 ,

66
43 ,

25
16 ,

66
41 ,

50
31 ,

44
27 ,

33
20 ,

50
29 ,

33
19 ,

44
25 ,

66
37 ,

25
14 ,

50
27 ,

66
35 ,

44
23 ,

25
13 ,

33
17 ,

33
16 ,

25
12 ,

44
21 ,

66
31 ,

50
23 ,

25
11 ,

66
29 ,

44
19 ,

33
14 ,

50
21 ,

33
13 ,

44
17 ,

50
19 ,

66
25 ,

25
9 ,

66
23 ,

44
15 ,

50
17 ,

25
8 ,

33
10 ,

44
13 ,

66
19 ,

25
7 ,

50
13 ,

66
17 ,

33
8 ,

25
6 ,

50
11 ,

33
7 ,

44
9 ,

66
13 ,

50
9 ,

25
4 ,

44
7 ,

33
5 ,

50
7 ,

33
4 ,

25
3 ,

44
5 ,

66
7 ,

25
2 ,

66
5 ,

44
3 ,

33
2 ,

50
3 , 25, 33, 44, 50, 66

Continued on next page
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Table 14 – continued from previous page

Rank k N(k)

11 46
45 ,

23
22 ,

46
43 ,

23
21 ,

46
41 ,

23
20 ,

46
39 ,

23
19 ,

46
37 ,

23
18 ,

46
35 ,

23
17 ,

46
33 ,

23
16 ,

46
31 ,

23
15 ,

46
29 ,

23
14 ,

46
27 ,

23
13 ,

46
25 ,

23
12 ,

23
11 ,

46
21 ,

23
10 ,

46
19 ,

23
9 ,

46
17 ,

23
8 ,

46
15 ,

23
7 ,

46
13 ,

23
6 ,

46
11 ,

23
5 ,

46
9 ,

23
4 ,

46
7 ,

23
3 ,

46
5 ,

23
2 ,

46
3 , 23, 46

12 90
89 ,

84
83 ,

78
77 ,

72
71 ,

70
69 ,

56
55 ,

52
51 ,

45
44 ,

39
38 ,

35
34 ,

70
67 ,

45
43 ,

39
37 ,

56
53 ,

35
33 ,

52
49 ,

84
79 ,

78
73 ,

72
67 ,

90
83 ,

35
32 ,

45
41 ,

56
51 ,

78
71 ,

52
47 ,

72
65 ,

39
35 ,

35
31 ,

90
79 ,

39
34 ,

70
61 ,

84
73 ,

52
45 ,

78
67 ,

90
77 ,

72
61 ,

84
71 ,

45
38 ,

70
59 ,

56
47 ,

35
29 ,

52
43 ,

45
37 ,

39
32 ,

72
59 ,

70
57 ,

90
73 ,

56
45 ,

84
67 ,

39
31 ,

90
71 ,

52
41 ,

78
61 ,

84
65 ,

35
27 ,

56
43 ,

72
55 ,

70
53 ,

78
59 ,

45
34 ,

90
67 ,

39
29 ,

35
26 ,

72
53 ,

56
41 ,

70
51 ,

84
61 ,

39
28 ,

52
37 ,

45
32 ,

78
55 ,

84
59 ,

56
39 ,

45
31 ,

35
24 ,

72
49 ,

78
53 ,

90
61 ,

52
35 ,

70
47 ,

56
37 ,

35
23 ,

90
59 ,

84
55 ,

72
47 ,

45
29 ,

39
25 ,

52
33 ,

84
53 ,

35
22 ,

78
49 ,

45
28 ,

70
43 ,

78
47 ,

72
43 ,

52
31 ,

39
23 ,

56
33 ,

90
53 ,

70
41 ,

45
26 ,

72
41 ,

39
22 ,

84
47 ,

52
29 ,

70
39 ,

56
31 ,

78
43 ,

90
49 ,

35
19 ,

70
37 ,

78
41 ,

90
47 ,

52
27 ,

56
29 ,

35
18 ,

72
37 ,

39
20 ,

84
43 ,

45
23 ,

45
22 ,

84
41 ,

39
19 ,

72
35 ,

35
17 ,

56
27 ,

52
25 ,

90
43 ,

78
37 ,

70
33 ,

35
16 ,

90
41 ,

78
35 ,

56
25 ,

70
31 ,

52
23 ,

84
37 ,

39
17 ,

72
31 ,

45
19 ,

70
29 ,

90
37 ,

56
23 ,

39
16 ,

52
21 ,

72
29 ,

78
31 ,

70
27 ,

45
17 ,

78
29 ,

35
13 ,

84
31 ,

52
19 ,

39
14 ,

45
16 ,

72
25 ,

84
29 ,

90
31 ,

35
12 ,

56
19 ,

70
23 ,

52
17 ,

90
29 ,

78
25 ,

72
23 ,

35
11 ,

45
14 ,

56
17 ,

84
25 ,

78
23 ,

45
13 ,

52
15 ,

39
11 ,

84
23 ,

70
19 ,

56
15 ,

72
19 ,

35
9 ,

39
10 ,

90
23 ,

45
11 ,

78
19 ,

70
17 ,

72
17 ,

56
13 ,

35
8 ,

84
19 ,

78
17 ,

52
11 ,

90
19 ,

39
8 ,

84
17 ,

56
11 ,

90
17 ,

70
13 ,

72
13 ,

39
7 ,

45
8 ,

52
9 ,

35
6 ,

56
9 ,

70
11 ,

45
7 ,

84
13 ,

72
11 ,

90
13 ,

78
11 ,

52
7 ,

84
11 ,

70
9 ,

39
5 ,

90
11 ,

35
4 ,

39
4 ,

72
7 ,

52
5 ,

78
7 ,

56
5 ,

45
4 ,

35
3 ,

90
7 ,

72
5 ,

78
5 ,

84
5 ,

52
3 ,

35
2 ,

56
3 ,

39
2 ,

45
2 ,

70
3 , 35, 39, 45, 52, 56, 70, 72, 78, 84, 90

13 None

Table 15: Strongly regular principal 3-tuples for rank 3

C.P. strongly regular principal 3-tuples

Φ7

{
7
6 ,

4
3 ,

5
3

}
,
{

7
6 ,

4
3 ,

3
2

}
, {7, 3, 5}, {7, 3, 4}, {7, 6, 5}, {7, 6, 4},

{
6
5 ,

7
5 ,

9
5

}
,{

6
5 ,

7
5 ,

8
5

}
,
{

3
2 ,

7
2 , 3
}
,
{

3
2 ,

7
2 ,

5
2

}
,
{

4, 7
2 , 3
}
,
{

4, 7
2 ,

5
2

}
,
{

4
3 ,

5
3 ,

7
3

}
,
{

5
4 ,

3
2 ,

7
4

}
,{

4
3 ,

8
3 ,

7
3

}
,
{

5
4 ,

9
4 ,

7
4

}
,
{

3, 5
3 ,

7
3

}
,
{

5
2 ,

3
2 ,

7
4

}
,
{

3, 8
3 ,

7
3

}
,
{

5
2 ,

9
4 ,

7
4

}
Φ9

{
9
8 ,

3
2 ,

5
4

}
, {9, 5, 8}, {9, 5, 3}, {9, 6, 8}, {9, 6, 3},

{
6
5 ,

9
5 ,

12
5

}
,
{

6
5 ,

9
5 ,

7
5

}
,{

5
4 ,

9
4 ,

3
2

}
,
{

3, 9
4 ,

3
2

}
,
{

3
2 , 3,

9
2

}
,
{

3
2 ,

7
2 ,

9
2

}
,
{

8
7 ,

12
7 ,

9
7

}
,
{

5, 3, 9
2

}
,
{

5, 7
2 ,

9
2

}
Φ14 {14, 6, 12}, {14, 6, 4}, {14, 10, 12}, {14, 10, 4},

{
10
9 ,

14
9 ,

4
3

}
,
{

6
5 ,

14
5 ,

8
5

}
,{

18
5 ,

14
5 ,

8
5

}
,
{

4
3 ,

8
3 ,

14
3

}
,
{

4
3 , 4,

14
3

}
Φ18

{
18
7 ,

12
7 ,

8
7

}
,
{

12
5 ,

18
5 ,

6
5

}
, {12, 14, 18}, {12, 6, 18}, {8, 14, 18}, {8, 6, 18}

Continued on next page
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Table 15 – continued from previous page

C.P. strongly regular principal 3-tuples

Φ3,5

{
3, 8

5 ,
14
5

}
,
{

8
3 , 5, 4

}
,
{

8
3 , 5, 3

}
,
{

14
9 ,

4
3 ,

5
3

}
,
{

14
9 ,

7
3 ,

5
3

}
,
{

8
3 ,

3
2 ,

5
2

}
,
{

8
3 , 3,

5
2

}
Φ4,5

{
9
4 , 5, 4

}
,
{

9
4 , 5, 3

}
,
{

9
4 ,

4
3 ,

5
3

}
,
{

9
4 ,

7
3 ,

5
3

}
Φ5,6 None

Φ3,8 None

Φ4,8

{
4
3 ,

7
6 ,

3
2

}
,
{

4, 3
2 ,

5
2

}
,
{

4, 3
2 ,

7
2

}
,
{

4, 9
2 ,

5
2

}
,
{

4, 9
2 ,

7
2

}
,
{

9
7 ,

8
7 ,

10
7

}
,
{

9
7 ,

8
7 ,

12
7

}
,

{3, 8, 4}, {3, 8, 6}, {7, 8, 4}, {7, 8, 6},
{

7
5 ,

6
5 ,

8
5

}
,
{

5
3 ,

4
3 ,

8
3

}
,
{

7
5 ,

12
5 ,

8
5

}
,{

5
3 ,

10
3 ,

8
3

}
,
{

3, 4
3 ,

8
3

}
,
{

3, 10
3 ,

8
3

}
Φ6,8

{
7
3 , 8, 4

}
,
{

7
3 , 8, 6

}
,
{

7
3 ,

6
5 ,

8
5

}
,
{

7
3 ,

12
5 ,

8
5

}
Φ3,10 None

Φ4,10

{
7
2 ,

10
3 , 4

}
,
{

7
2 ,

10
3 ,

4
3

}
,
{

7
2 , 4, 10

}
,
{

7
2 , 8, 10

}
Φ6,10

{
6, 14

5 ,
8
5

}
,
{

14
9 ,

10
3 , 4

}
,
{

14
9 ,

10
3 ,

4
3

}
,
{

8
3 , 4, 10

}
,
{

8
3 , 8, 10

}
Φ3,12

{
9
5 ,

12
5 ,

6
5

}
, {5, 6, 12}, {9, 6, 12}

Φ4,12

{
4, 8

3 ,
14
3

}
,
{

4, 8
3 ,

4
3

}
,
{

4, 14
3 ,

10
3

}
,
{

4, 10
3 ,

4
3

}
,
{

10
7 ,

12
7 ,

18
7

}
,{

10
7 ,

12
7 ,

8
7

}
,
{

8
5 ,

12
5 ,

6
5

}
,
{

14
5 ,

12
5 ,

6
5

}
, {4, 6, 12}, {4, 12, 8},

{10, 12, 8},
{

14
11 ,

18
11 ,

12
11

}
, {10, 6, 12},

{
4
3 ,

14
9 ,

10
9

}
Φ6,12

{
6, 9

2 ,
3
2

}
,
{

9
7 ,

12
7 ,

18
7

}
,
{

7
5 ,

12
5 ,

6
5

}
,
{

3, 12
5 ,

6
5

}
, {3, 6, 12}

Φ3,4,6

{
3, 7

4 ,
3
2

}
,
{

3, 7
4 ,

7
2

}
,
{

7
3 , 4,

5
3

}
,
{

3, 5
2 , 6
}
,
{

5, 5
2 , 6
}
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Table 16: Strongly regular non-principal 3-tuples

C.P. strongly regular non-principal 3-tuples

Φ3,12

{
3, 9

4 ,
5
4

}
, {5, 12, 8}, {9, 12, 8}

Φ6,12

{
6, 7

2 ,
3
2

}
, {3, 12, 8},

{
9
7 ,

12
7 ,

8
7

}

Table 17: Strongly regular principal 4-tuples for rank 4

C.P. strongly regular principal 4-tuples

Φ15

{
15
2 ,

9
2 , 3, 8

}
,
{

15
2 , 5, 3,

3
2

}
,
{

5
4 ,

15
8 ,

3
2 ,

9
8

}
,
{

9
7 ,

15
7 ,

18
7 ,

8
7

}
,
{

20
7 ,

15
7 ,

18
7 , 3

}
,{

3
2 , 3,

15
4 ,

5
4

}
, {3, 8, 12, 15},

{
8
7 ,

3
2 ,

9
7 ,

15
14

}
, {3, 9, 5, 15},

{14, 8, 5, 15}, {14, 9, 12, 15}

Φ16

{
16
15 ,

6
5 ,

4
3 ,

8
5

}
, {16, 4, 6, 8}, {16, 4, 6, 10}, {16, 4, 12, 8}, {16, 4, 12, 10},

{16, 14, 6, 8}, {16, 14, 6, 10}, {16, 14, 12, 8}, {16, 14, 12, 10},
{

14
13 ,

16
13 ,

18
13 ,

20
13

}
,{

14
13 ,

16
13 ,

24
13 ,

20
13

}
,
{

4
3 ,

16
3 ,

8
3 ,

10
3

}
,
{

4
3 ,

16
3 ,

8
3 , 4
}
,
{

4
3 ,

16
3 ,

14
3 ,

10
3

}
,
{

4
3 ,

16
3 ,

14
3 , 4

}
,{

6, 16
3 ,

8
3 ,

10
3

}
,
{

6, 16
3 ,

8
3 , 4
}
,
{

6, 16
3 ,

14
3 ,

10
3

}
,
{

6, 16
3 ,

14
3 , 4

}
,
{

12
11 ,

14
11 ,

16
11 ,

18
11

}
,{

12
11 ,

14
11 ,

16
11 ,

20
11

}
,
{

6
5 ,

8
5 ,

16
5 ,

12
5

}
,
{

6
5 ,

8
5 ,

16
5 ,

14
5

}
,
{

12
11 ,

24
11 ,

16
11 ,

18
11

}
,
{

12
11 ,

24
11 ,

16
11 ,

20
11

}
,{

6
5 ,

18
5 ,

16
5 ,

12
5

}
,
{

6
5 ,

18
5 ,

16
5 ,

14
5

}
,
{

4, 8
5 ,

16
5 ,

12
5

}
,
{

4, 8
5 ,

16
5 ,

14
5

}
,
{

4, 18
5 ,

16
5 ,

12
5

}
,{

4, 18
5 ,

16
5 ,

14
5

}
,
{

10
9 ,

4
3 ,

14
9 ,

16
9

}
,
{

8
7 ,

10
7 ,

12
7 ,

16
7

}
,
{

10
9 ,

4
3 ,

20
9 ,

16
9

}
,
{

8
7 ,

10
7 ,

18
7 ,

16
7

}
,{

8
7 ,

20
7 ,

12
7 ,

16
7

}
,
{

8
7 ,

20
7 ,

18
7 ,

16
7

}
,
{

8
3 ,

4
3 ,

14
9 ,

16
9

}
,
{

8
3 ,

4
3 ,

20
9 ,

16
9

}
Φ20 {20, 4, 12, 8}, {20, 4, 10, 14}, {20, 18, 12, 14}, {20, 18, 10, 8},

{
4
3 ,

20
3 ,

14
3 ,

10
3

}
,{

4
3 ,

20
3 , 4,

16
3

}
,
{

12
11 ,

14
11 ,

20
11 ,

18
11

}
,
{

30
11 ,

14
11 ,

20
11 ,

24
11

}
,
{

8
7 ,

10
7 ,

18
7 ,

20
7

}
,{

14
13 ,

30
13 ,

24
13 ,

20
13

}
,
{

8
7 ,

24
7 ,

16
7 ,

20
7

}
Φ24 {24, 8, 14, 6}, {24, 8, 12, 20}, {24, 18, 14, 20}, {24, 18, 12, 6},

{
8
7 ,

24
7 ,

20
7 ,

12
7

}
,{

30
7 ,

24
7 ,

18
7 ,

12
7

}
,
{

12
11 ,

18
11 ,

24
11 ,

30
11

}
,
{

14
13 ,

20
13 ,

24
13 ,

18
13

}
,
{

6
5 ,

12
5 ,

18
5 ,

24
5

}
Φ30

{
30
7 ,

24
7 ,

18
7 ,

8
7

}
, {8, 14, 20, 30}, {8, 18, 12, 30}, {24, 14, 12, 30}, {24, 18, 20, 30}

Φ3,7

{
10
3 ,

7
2 ,

5
2 , 4
}
,
{

10
3 ,

7
2 ,

5
2 ,

3
2

}
,
{

10
3 ,

7
2 , 3, 4

}
,
{

10
3 ,

7
2 , 3,

3
2

}
,
{

16
9 ,

5
3 ,

7
3 , 3
}
,{

16
9 ,

5
3 ,

7
3 ,

4
3

}
,
{

16
9 ,

8
3 ,

7
3 , 3
}
,
{

16
9 ,

8
3 ,

7
3 ,

4
3

}
,
{

10
3 , 3, 4, 7

}
,
{

10
3 , 3, 5, 7

}
,{

10
3 , 6, 4, 7

}
,
{

10
3 , 6, 5, 7

}
,
{

16
9 ,

4
3 ,

3
2 ,

7
6

}
,
{

16
9 ,

4
3 ,

5
3 ,

7
6

}
Continued on next page
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Table 17 – continued from previous page

C.P. strongly regular principal 4-tuples

Φ4,7

{
15
8 ,

7
6 ,

3
2 ,

4
3

}
,
{

15
8 ,

7
6 ,

5
3 ,

4
3

}
,
{

15
8 ,

3
2 ,

5
2 ,

7
2

}
,
{

15
8 ,

3
2 , 3,

7
2

}
,
{

15
8 , 4,

5
2 ,

7
2

}
,
{

15
8 , 4, 3,

7
2

}
Φ6,7 None

Φ3,9

{
3
2 ,

7
6 ,

5
3 ,

4
3

}
,
{

3
2 ,

7
3 ,

5
3 ,

4
3

}
,
{

3, 4
3 ,

7
3 ,

10
3

}
,
{

3, 4
3 ,

7
3 ,

5
3

}
,
{

3, 4
3 ,

8
3 ,

10
3

}
,
{

3, 4
3 ,

8
3 ,

5
3

}
,

{4, 9, 5, 8}, {4, 9, 5, 3}, {4, 9, 6, 8}, {4, 9, 6, 3},
{

7
4 ,

9
8 ,

3
2 ,

15
8

}
,
{

7
4 ,

9
8 ,

3
2 ,

5
4

}
, {7, 9, 5, 8},

{7, 9, 5, 3}, {7, 9, 6, 8}, {7, 9, 6, 3},
{

8
5 ,

6
5 ,

9
5 ,

12
5

}
,
{

8
5 ,

6
5 ,

9
5 ,

7
5

}
,
{

7
4 ,

5
4 ,

9
4 ,

3
2

}
,{

7
4 , 3,

9
4 ,

3
2

}
,
{

5
2 ,

5
4 ,

9
4 ,

3
2

}
,
{

5
2 , 3,

9
4 ,

3
2

}
,
{

5
2 ,

3
2 , 3,

9
2

}
,
{

5
2 ,

3
2 ,

7
2 ,

9
2

}
,
{

10
7 ,

8
7 ,

12
7 ,

9
7

}
,{

5
2 , 5, 3,

9
2

}
,
{

5
2 , 5,

7
2 ,

9
2

}
,
{

10
7 ,

15
7 ,

12
7 ,

9
7

}
,
{

4, 3
2 , 3,

9
2

}
,
{

4, 3
2 ,

7
2 ,

9
2

}
,
{

4, 5, 3, 9
2

}
,{

4, 5, 7
2 ,

9
2

}
Φ4,9 None

Φ6,9

{
5
2 ,

9
5 ,

12
5 ,

6
5

}
,
{

5
2 ,

9
5 ,

7
5 ,

6
5

}
,
{

7
4 ,

7
2 ,

9
2 , 5
}
,
{

7
4 ,

7
2 ,

9
2 ,

3
2

}
,
{

7
4 , 3,

9
2 , 5
}
,
{

7
4 , 3,

9
2 ,

3
2

}
,{

5
2 , 6, 8, 9

}
,
{

5
2 , 6, 3, 9

}
,
{

5
2 , 5, 8, 9

}
,
{

5
2 , 5, 3, 9

}
Φ3,14 None

Φ4,14

{
9
2 , 14, 4, 10

}
,
{

9
2 , 14, 4, 6

}
,
{

9
2 , 14, 12, 10

}
,
{

9
2 , 14, 12, 6

}
,
{

9
2 ,

4
3 ,

14
3 , 4

}
,{

9
2 ,

4
3 ,

14
3 ,

8
3

}
,
{

9
2 ,

16
3 ,

14
3 , 4

}
,
{

9
2 ,

16
3 ,

14
3 ,

8
3

}
Φ6,14

{
10
3 , 14, 6, 12

}
,
{

10
3 , 14, 6, 4

}
,
{

10
3 , 14, 10, 12

}
,
{

10
3 , 14, 10, 4

}
,
{

10
3 ,

6
5 ,

14
5 ,

16
5

}
,{

10
3 ,

6
5 ,

14
5 ,

8
5

}
,
{

10
3 ,

18
5 ,

14
5 ,

16
5

}
,
{

10
3 ,

18
5 ,

14
5 ,

8
5

}
,
{

16
9 ,

4
3 ,

8
3 ,

14
3

}
,
{

16
9 ,

4
3 , 4,

14
3

}
,{

16
9 ,

16
3 ,

8
3 ,

14
3

}
,
{

16
9 ,

16
3 , 4,

14
3

}
Φ3,18 {7, 18, 12, 14}, {7, 18, 12, 6}, {7, 18, 8, 14}, {7, 18, 8, 6}

Φ4,18 None

Φ6,18

{
6, 4

3 ,
14
3 ,

16
3

}
,
{

6, 4
3 ,

14
3 ,

8
3

}
,
{

6, 4
3 ,

10
3 ,

16
3

}
,
{

6, 4
3 ,

10
3 ,

8
3

}
,
{

6, 20
3 ,

14
3 ,

16
3

}
,{

6, 20
3 ,

14
3 ,

8
3

}
,
{

6, 20
3 ,

10
3 ,

16
3

}
,
{

6, 20
3 ,

10
3 ,

8
3

}
,
{

20
17 ,

18
17 ,

24
17 ,

30
17

}
, {4, 18, 12, 14},

{4, 18, 12, 6}, {4, 18, 8, 14}, {4, 18, 8, 6}, {16, 18, 12, 14}, {16, 18, 12, 6},

{16, 18, 8, 14}, {16, 18, 8, 6},
{

10
7 ,

8
7 ,

18
7 ,

20
7

}
,
{

10
7 ,

8
7 ,

18
7 ,

12
7

}
,
{

14
11 ,

12
11 ,

18
11 ,

24
11

}
,{

14
11 ,

12
11 ,

18
11 ,

16
11

}
,
{

10
7 ,

24
7 ,

18
7 ,

20
7

}
,
{

10
7 ,

24
7 ,

18
7 ,

12
7

}
,
{

8
5 ,

6
5 ,

16
5 ,

18
5

}
,
{

16
13 ,

14
13 ,

24
13 ,

18
13

}
,{

8
5 ,

6
5 ,

12
5 ,

18
5

}
,
{

16
13 ,

14
13 ,

20
13 ,

18
13

}
,
{

16
13 ,

30
13 ,

24
13 ,

18
13

}
,
{

16
13 ,

30
13 ,

20
13 ,

18
13

}
,
{

4, 6
5 ,

16
5 ,

18
5

}
,{

4, 6
5 ,

12
5 ,

18
5

}
Continued on next page
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Table 17 – continued from previous page

C.P. strongly regular principal 4-tuples

Φ5,8 None

Φ5,10

{
5
4 ,

7
4 ,

15
8 ,

9
8

}
,
{

5
4 ,

3
2 ,

15
8 ,

9
8

}
,
{

5, 4, 5
2 ,

3
2

}
,
{

5, 4, 9
2 ,

3
2

}
,
{

5, 3, 5
2 ,

3
2

}
,
{

5, 3, 9
2 ,

3
2

}
,{

3
2 ,

5
2 ,

7
4 ,

5
4

}
,
{

4
3 ,

5
3 ,

3
2 ,

5
2

}
,
{

4
3 ,

5
3 ,

3
2 ,

7
6

}
,
{

3, 5
2 ,

7
4 ,

5
4

}
,
{

7
3 ,

5
3 ,

3
2 ,

5
2

}
,
{

7
3 ,

5
3 ,

3
2 ,

7
6

}
,{

5
3 , 3,

10
3 , 4

}
,
{

5
3 , 3,

10
3 ,

4
3

}
,
{

5
3 ,

7
3 ,

10
3 , 4

}
,
{

5
3 ,

7
3 ,

10
3 ,

4
3

}
, {3, 7, 4, 10}, {3, 7, 8, 10},

{3, 5, 4, 10}, {3, 5, 8, 10}, {9, 7, 4, 10}, {9, 7, 8, 10}, {9, 5, 4, 10}, {9, 5, 8, 10}

Φ5,12 None

Φ8,10 None

Φ8,12 None

Φ10,12 None

Φ3,4,5

{
3, 7

4 ,
8
5 ,

14
5

}
,
{

8
3 ,

9
4 , 5, 4

}
,
{

8
3 ,

9
4 , 5, 3

}
,
{

14
9 ,

9
4 ,

4
3 ,

5
3

}
,
{

14
9 ,

9
4 ,

7
3 ,

5
3

}
Φ3,5,6

{
3, 8

5 ,
14
5 ,

3
2

}
,
{

3, 8
5 ,

14
5 ,

7
2

}
Φ4,5,6 None

Φ3,4,8

{
7
3 , 4,

3
2 ,

5
2

}
,
{

7
3 , 4,

3
2 ,

7
2

}
,
{

7
3 , 4,

9
2 ,

5
2

}
,
{

7
3 , 4,

9
2 ,

7
2

}
Φ3,6,8 None

Φ4,6,8

{
4, 5

3 ,
3
2 ,

5
2

}
,
{

4, 5
3 ,

3
2 ,

7
2

}
,
{

4, 5
3 ,

9
2 ,

5
2

}
,
{

4, 5
3 ,

9
2 ,

7
2

}
,
{

3, 7
3 , 8, 4

}
,
{

3, 7
3 , 8, 6

}
,{

7, 7
3 , 8, 4

}
,
{

7, 7
3 , 8, 6

}
,
{

7
5 ,

7
3 ,

6
5 ,

8
5

}
,
{

7
5 ,

7
3 ,

12
5 ,

8
5

}
Φ3,4,10 None

Φ3,6,10

{
3, 6, 14

5 ,
8
5

}
,
{

5, 6, 14
5 ,

8
5

}
Φ4,6,10

{
5
2 , 6,

14
5 ,

8
5

}
,
{

7
2 ,

14
9 ,

10
3 , 4

}
,
{

7
2 ,

14
9 ,

10
3 ,

4
3

}
,
{

7
2 ,

8
3 , 4, 10

}
,
{

7
2 ,

8
3 , 8, 10

}
Φ3,4,12

{
3, 7

4 ,
9
4 ,

15
4

}
,
{

7
3 , 4,

8
3 ,

14
3

}
,
{

7
3 , 4,

10
3 ,

4
3

}
,
{

9
5 ,

8
5 ,

12
5 ,

6
5

}
,
{

9
5 ,

14
5 ,

12
5 ,

6
5

}
,{

15
7 ,

10
7 ,

12
7 ,

18
7

}
,
{

15
7 ,

16
7 ,

12
7 ,

18
7

}
, {5, 4, 6, 12},

{
15
11 ,

14
11 ,

18
11 ,

12
11

}
, {5, 10, 6, 12},{

15
11 ,

20
11 ,

18
11 ,

12
11

}
, {9, 4, 6, 12}, {9, 10, 6, 12}

Φ3,6,12

{
3
2 ,

5
4 ,

15
8 ,

9
8

}
,
{

3
2 ,

9
4 ,

15
8 ,

9
8

}
,
{

3, 3
2 ,

9
4 ,

15
4

}
,
{

3, 7
2 ,

9
4 ,

15
4

}
,
{

3, 6, 9
2 ,

3
2

}
,{

5, 6, 9
2 ,

3
2

}
,
{

9
5 ,

7
5 ,

12
5 ,

6
5

}
,
{

9
5 , 3,

12
5 ,

6
5

}
,
{

15
7 ,

9
7 ,

12
7 ,

18
7

}
, {5, 3, 6, 12},

{9, 3, 6, 12}

Φ4,6,12

{
4, 5

3 ,
14
3 ,

10
3

}
,
{

4, 5
3 ,

14
3 ,

8
3

}
,
{

4, 5
3 ,

8
3 ,

4
3

}
,
{

4, 5
3 ,

10
3 ,

4
3

}
,
{

5
2 , 6,

7
2 ,

3
2

}
,
{

5
2 , 6,

9
2 ,

3
2

}
,

Continued on next page
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Table 17 – continued from previous page

C.P. strongly regular principal 4-tuples

{4, 3, 12, 8},
{

10
7 ,

9
7 ,

12
7 ,

8
7

}
,
{

14
5 , 3,

12
5 ,

6
5

}
, {10, 3, 12, 8}, {10, 3, 12, 6},{

8
5 ,

7
5 ,

12
5 ,

6
5

}
,
{

16
7 ,

9
7 ,

12
7 ,

8
7

}
, {4, 3, 12, 6},

{
8
5 , 3,

12
5 ,

6
5

}
,
{

14
5 ,

7
5 ,

12
5 ,

6
5

}
,{

8
5 ,

7
5 ,

16
5 ,

12
5

}
,
{

14
5 ,

7
5 ,

16
5 ,

12
5

}
,
{

16
7 ,

9
7 ,

18
7 ,

12
7

}
,
{

14
5 , 3,

16
5 ,

12
5

}
,
{

10
7 ,

9
7 ,

18
7 ,

12
7

}
,{

8
5 , 3,

16
5 ,

12
5

}
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13 Mathematical background

The classification problem for 4d N = 2 SCFTs has been (partially) solved: we are now interested

in exploring the physical content of a generic 4d N = 2 SCFT. In order to do this in general – or at

least for a very large class of examples – we have to change the language: we shall use now category

theory rather than special Kähler geometry. Eventually, in the concluding section, we shall reunite

the two languages explicitly for some classes of examples (see section 18). A deeper connection

between the two languages is still work in progress.

In this section we recall the basic definitions of DG categories [160], cluster categories [6], stability

conditions for Abelian and triangulated categories [44] and show some concrete examples. We

then specialize these definitions to the Ginzburg algebra [132] Γ associated to a BPS quiver with

(super)potential (Q,W ) [72].

Some readers may prefer to skip this section and refer back to it when looking for definitions

and/or details on some mathematical tool used in the main body of this thesis.

13.1 Differential graded categories

The main reference for this section is [160]. Let k be a commutative ring,85 for example a field or

the ring of integers Z. We will write ⊗ for the tensor product over k.

Definition 15. A k-algebra is a k-module A endowed with a k-linear associative multiplication

A⊗k A→ A admitting a two-sided unit 1 ∈ A.

For example, a Z-algebra is just a (possibly non-commutative) ring. A k-category A is a “k-

algebra with several objects”. Thus, it is the datum of a class of objects obj(A), of a k-module

A(X,Y ) for all objects X,Y of A, and of k-linear associative composition maps

A(Y,Z)⊗A(X,Y )→ A(X,Z), (f, g) 7→ fg

admitting units 1X ∈ A(X,X). For example, we can interpret k-algebras as k-categories with only

one object. The category modA of finitely generated right A-modules over a k-algebra A is an

example of a k-category with many objects. It is also an example of a k-linear category (i.e. a

k-category which admits all finite direct sums).

Definition 16. A graded k-module is a k-module V together with a decomposition indexed by the

positive and the negative integers:

V =
⊕
p∈Z

V p.

The shifted module V [1] is defined by V [1]p = V p+1, p ∈ Z. A morphism f : V → V of graded

k-modules of degree n is a k-linear morphism such that f(V p) ⊂ V p+n for all p ∈ Z.

Definition 17. The tensor product V ⊗ W of two graded k-modules V and W is the graded

k-module with components

(V ⊗W )n =
⊕
p+q=n

V p ⊗W q, n ∈ Z.

85 In all our physical applications k will be the (algebraically closed) field of complex numbers C.
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The tensor product f ⊗ g of two maps f : V → V and g : W → W of graded k-modules is defined

using the Koszul sign rule: we have

(f ⊗ g)(v ⊗ w) = (−1)pq f(v)⊗ g(w)

if g is of degree p and v belongs to V q.

Definition 18. A graded k-algebra is a graded k-module A endowed with a multiplication morphism

A⊗A→ A which is graded of degree 0, associative and admits a unit 1 ∈ A0.

An “ordinary” k-algebra may be identified with a graded k-algebra concentrated in degree 0.

Definition 19. A differential graded (=DG) k-module is a Z-graded k-module V endowed with a

differential dV , i.e. a map dV : V → V of degree 1 such that d2
V = 0. Equivalently, V is a complex of

k-modules. The shifted DG module V [1] is the shifted graded module endowed with the differential

−dV .

The tensor product of two DG k-modules is the graded module V ⊗ W endowed with the

differential dV ⊗ 1W + 1V ⊗ dW .

Definition 20. A differential graded k-algebra A is a DG k-module endowed with a multiplication

morphism A ⊗ A → A graded of degree 0 and associative. Moreover, the differential satisfies the

graded Leibnitz rule:

d(ab) = (da)b+ (−1)deg(a) a(db), ∀ a, b ∈ A and a homogeneous.

The cohomology of a DG algebra is defined as H∗(A) := ker d/im d. Let modA denote the

category of finitely generated DG modules over the DG algebra A.

Definition 21. The derived category D(A) := D(modA) is the localization of the category modA

with respect to the class of quasi-isomorphisms.

Thus, the objects of D(A) are the DG modules and its morphisms are obtained from morphisms

of DG modules by formally inverting all quasi-isomorphisms. The bounded derived category of

modA, denoted DbA, is the triangulated subcategory of D(A) whose objects are quasi-isomorphic

to objects with bounded cohomology.

Definition 22. The perfect derived category of a DG algebra A, PerA, is the smallest full triangu-

lated subcategory of D(A) containing A which is stable under taking shifts, extensions and direct

summands.

13.2 Quivers and mutations

In this section we follow [165]. Let k be an algebraically closed field.

Definition 23. A (finite) quiver Q is a (finite) oriented graph (possibly with loops and 2-cycles).

We denote its set of vertices by Q0 and its set of arrows by Q1. For an arrow a of Q, let s(a) denote

its source node and t(a) denote its target node. The lazy path corresponding to a vertex i will be

denoted by ei.
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Definition 24. The path algebra kQ̂ is the associative unital algebra whose elements are finite

compositions of arrows of Q, where the composition of a, b ∈ Q1 is denoted ab and it is nonzero iff

s(b) = t(a). The complete path algebra kQ is the completion of the path algebra with respect to

the ideal I generated by the arrows of Q.

Let I be the ideal of kQ generated by the arrows of Q. A potential W on Q is an element

of the closure of the space generated by all non trivial cyclic paths of Q. We say two potentials

are cyclically equivalent if their difference is in the closure of the space generated by all differences

a1...as − a2...asa1, where a1...as is a cycle.

Definition 25. Let u, p and v be nontrivial paths of Q such that c = upv is a nontrivial cycle. For

the path p of Q, we define

∂p : kQ→ kQ

as the unique continuous linear map which takes a cycle c to the sum
∑

c=upv vu taken over all

decompositions of the cycle c (where u and v are possibly lazy paths).

Obviously two cyclically equivalent potentials have the same image under ∂p. If p = a is an

arrow of Q, we call ∂a the cyclic derivative with respect to a. Let W be a potential on Q such that

W is in I2 and no two cyclically equivalent cyclic paths appear in the decomposition of W . Then

the pair (Q,W ) is called a quiver with potential.

Definition 26. Two quivers with potential (Q,W ) and (Q′,W ′) are right-equivalent if Q and

Q′ have the same set of vertices and there exists an algebra isomorphism φ : kQ → kQ′ whose

restriction on vertices is the identity map and φ(W ) and W ′ are cyclically equivalent. Such an

isomorphism φ is called a right-equivalence.

Definition 27. The Jacobian algebra of a quiver with potential (Q,W ), denoted by J(Q,W ), is

the quotient of the complete path algebra kQ by the closure of the ideal generated by ∂aW , where

a runs over all arrows of Q:

J(Q,W ) := kQ/ 〈∂aW 〉 .

We say that the quiver with potential (Q,W ) is Jacobi-finite if the Jacobian algebra J(Q,W ) is

finite-dimensional over k.

It is clear that two right-equivalent quivers with potential have isomorphic Jacobian algebras.

A quiver with potential is called trivial if its potential is a linear combination of cycles of length 2

and its Jacobian algebra is the product of copies of the base field k.

13.2.1 Quiver mutations

Let (Q,W ) be a quiver with potential. Let i ∈ Q0 a vertex. Assume the following conditions:

• the quiver Q has no loops;

• the quiver Q does not have 2-cycles at i;

We define a new quiver with potential µ̃i(Q,W ) = (Q′,W ′) as follows. The new quiver Q′ is

obtained from Q by
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1. For each arrow β with target i and each arrow α with source i, add a new arrow [αβ] from

the source of β to the target of α.

2. Replace each arrow α with source or target i with an arrow α∗ in the opposite direction.

If we represent the quiver with its exchange matrix Bij , i.e. the matrix such that

Bij = #{ arrows from i to j} −#{ arrows from j to i} (13.1)

then the transformation that Bij undergoes is

B′ij =

{
−Bij , i = k or j = k

Bij + max[−Bik, 0]Bkj +Bik max[Bkj , 0] otherwise.

The new potential W ′ is the sum of two potentials W ′1 and W ′2. The potential W ′1 is obtained from

W by replacing each composition αβ by [αβ], where β is an arrow with target i. The potential W ′2
is given by [94]

W ′2 =
∑
α,β

[αβ]β∗α∗,

the sum ranging over all pairs of arrows α and β such that β ends at i and α starts at i.

Definition 28. Let I be the ideal in kQ generated by all arrows. Then, a quiver with potential is

called reduced if ∂aW is contained in I2 for all arrows a of Q.

One shows that all quivers with potential (Q,W ) are right-equivalent to the direct sum of a reduced

quiver with potential and a trivial one.86

We can now give the definition of the mutated quiver: we define µi(Q,W ) as the reduced part

of µ̃i(Q,W ), and call µi the mutation at the vertex i. An example will clarify all these concepts.

Example 42 (A3 quiver). Consider the quiver A3 given by Q : •1
α← •2

β→ •3 with W = 0. Let

us consider the quiver µ1(Q) : •1
α∗→ •2

β→ •3 with W = 0. Now apply the mutation at vertex 2:

we get

•2
α

yy
•1

[αβ]
// •3

β∗
ee

µ2(µ1(Q))

with potential W = αβ∗[αβ].

We conclude this subsection with the following

Theorem 7 ( [165]).

1. The right-equivalence class of µ̃i(Q,W ) is determined by the right-equivalence class of (Q,W ).

86 In terms of the corresponding SQM system, the process of replacing the pair (Q,W ) by its reduced part
(Qred.,Wred.) corresponds to integrate away the massive Higgs bifundamentals.
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2. The quiver with potential µ̃2
i (Q,W ) is right-equivalent to the direct sum of (Q,W ) with a

trivial quiver with potential.

3. The correspondence µi acts as an involution on the right equivalence classes of reduced quivers

with potential.

13.3 Cluster algebras

We follow [217]. Let Q be a 2-acyclic quiver with vertices 1, 2, ..., n, and let F = Θ(x1, ..., xn) be

the function field in n indeterminates over Θ. Consider the pair (~x,Q), where ~x = {x1, ..., xn}. The

cluster algebra C(~x,Q) will be defined to be a subring of F .

The pair (~x,Q) consisting of a transcendence basis ~x for F over the rational numbers Θ, together

with a quiver with n vertices, is called a seed. For i = 1, ..., n we define a mutation µi taking the

seed (~x,Q) to a new seed (~x′, Q′), where Q′ = µi(Q) as discussed in 13.2, and ~x′ is obtained from

~x by replacing xi by a new element x′i in F . Here x′i is defined by

xix
′
i = m1 +m2,

where m1 is a monomial in the variables x1, ..., xn, where the power of xj is the number of arrows

from j to i in Q, and m2 is the monomial where the power of xj is the number of arrows from i to

j. (If there is no arrow from j to i, then m1 = 1, and if there is no arrow from i to j, then m2 = 1.)

Note that while in the new seed the quiver Q′ only depends on the quiver Q, then x′ depends on

both x and Q. We have

µ2
i (~x,Q) = (~x,Q).

The procedure to get the full cluster algebra is iterative. We perform this mutation operation

for all i = 1, ..., n, then we perform it on the new seeds and so on. Either we get new seeds or

we get back one of the seeds already computed. The n-element subsets ~x, ~x′, ~x′′, ... occurring are

by definition the clusters, the elements in the clusters are the cluster variables, and the seeds are

all pairs (~x′, Q′) occurring in the iterative procedure. The corresponding cluster algebra C(~x,Q),

which as an algebra only depends on Q, is the subring of F generated by the cluster variables.

Example 43. Let Q be the quiver 1 → 2 → 3 and ~x = {x1, x2, x3}, where x1, x2, x3 are inde-

terminates, and F = Θ(x1, x2, x3). We have µ1(~x,Q) = (x′, Q′), where Q′ = µ1(Q) is the quiver

1← 2→ 3 and ~x′ = {x′1, x2, x3}, where x1x
′
1 = 1 + x2, so that x′1 = 1+x2

x1
. And so on. The clusters

are:

{x1, x2, x3}, {
1 + x2

x1
, x2, x3}, {x1,

x1 + x3

x2
, x3}, {x1, x2,

1 + x2

x3
},

{1 + x2

x1
,
x1 + (1 + x2)x3

x1x2
, x3}, {

1 + x2

x1
, x2,

1 + x2

x3
}, {x1 + (1 + x2)x3

x1x2
,
x1 + x3

x2
, x3},

{x1,
x1 + x3

x2
,
(1 + x2)x1 + x3

x2x3
}, {x1,

(1 + x2)x1 + x3

x2x3
,
1 + x2

x3
},

{1 + x2

x1
,
x1 + (1 + x2)x3

x1x2
,
(1 + x2)x1 + (1 + x2)x3

x1x2x3
}, {1 + x2

x1
,
(1 + x2)x1 + (1 + x2)x3

x1x2x3
,
1 + x2

x3
},

{x1 + (1 + x2)x3

x1x2
,
x1 + x3

x2
,
(1 + x2)x1 + (1 + x2)x3

x1x2x3
},
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Figure 3: This figure represent the CEG of the A3 cluster algebra. The dotted arrows are identifi-
cations up to permutations of the variables. The plain arrows represent mutations.

{(1 + x2)x1 + (1 + x2)x3

x1x2x3
,
x1 + x3

x2
,
(1 + x2)x1 + x3

x2x3
},

{(1 + x2)x1 + (1 + x2)x3

x1x2x3
,
(1 + x2)x1 + x3

x2x3
,
1 + x2

x3
},

and the cluster variables are:

x1, x2, x3,
1 + x2

x1
,
x1 + x3

x2
,
1 + x2

x3
,
x1 + (1 + x2)x3

x1x2
,
(1 + x2)x1 + x3

x2x3
,
(1 + x2)x1 + (1 + x2)x3

x1x2x3
.

13.3.1 The cluster exchange graph (CEG)

If Q′ is a quiver mutation equivalent to Q, then the cluster algebras C(Q′) and C(Q) are isomor-

phic. The n-regular connected graph whose vertices are the seeds of C(~x,Q) (up to simultaneous

renumbering of rows, columns and variables) and whose edges connect the seeds related by a single

mutation is called cluster exchange graph (=CEG). The CEG for Example 43 is represented in

figure 3.

13.4 Ginzburg DG algebras

Given a quiver Q with potential W , we can associate to it the Jacobian algebra J(Q,W ) :=

kQ/ 〈∂W 〉, where kQ is the quiver path algebra (see section 13.2). It is also possible to extend the

path algebra kQ to a DG algebra: the Ginzburg algebra.

Definition 29. (Ginzburg [132]). Let (Q,W ) be a quiver with potential. Let Q̂ be the graded

quiver with the same set of vertices as Q and whose arrows are:

• the arrows of Q (of degree 0);
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• an arrow a∗ : j → i of degree −1 for each arrow a : i→ j of Q;

• a loop ti : i→ i of degree −2 for each vertex i ∈ Q0.

The completed Ginzburg DG algebra Γ(Q,W ) is the DG algebra whose underlying graded algebra

is the completion87 of the graded path algebra kQ̂. The differential of Γ(Q,W ) is the unique

continuous linear endomorphism homogeneous of degree 1 which satisfies the Leibniz rule (i.e.

d(uv) = (du)v + (−1)p udv for all homogeneous u of degree p and all v), and takes the following

values on the arrows of Q̂:

d(a) = 0

d(a∗) = ∂aW, ∀a ∈ Q1;

d(ti) = ei

∑
a∈Q1

[a, a∗]

ei, ∀i ∈ Q0.

We shall write Γ(Q,W ) simply as Γ, unless we wish to stress its dependence on (Q,W ).

From the definition of Γ and d, one sees that H0Γ ∼= J(Q,W ).

To the DG algebra Γ we associate three important triangle categories which we are now going

to define and analyze in detail.

13.5 The bounded and perfect derived categories

The DG-category modΓ is the category whose objects are finitely generated graded Γ-modules and

the morphisms spaces have the structure of DG modules (cfr. section 13.1). The derived category

DΓ := D(modΓ) [160, 161] is the localization of modΓ at quasi-isomorphisms (the cohomology

structure is given by the differential d of the Ginzburg algebra). Thus, the objects of DΓ are DG

modules. There are two fundamental subcategories associated to DΓ:

• The bounded derived category DbΓ: it is the full subcategory of DΓ such that its objects

are graded modules M for which, given a certain N > 0, Hn(M) = 0 for all |n| > N . This

category is 3-CY (see below).

• The perfect derived category PerΓ, i.e. the smallest full triangulated subcategory of DΓ which

contains Γ and is closed under extensions, shifts in degree and taking direct summands.

Both PerΓ and DbΓ are triangulated subcategories of DΓ and in particular, PerΓ ⊃ DbΓ as a

full subcategory (as explained in [162]). Furthermore,88 the category DbΓ has finite-dimensional

morphism spaces (even its graded morphism spaces are of finite total dimension) and is 3-Calabi-

Yau (3-CY), by which we mean that we have bifunctorial isomorphisms89

DHom(X,Y ) ∼= Hom(Y,X[3]), (13.2)

87 The completion is taken with respect to the I-adic topology, where I is the ideal of the path algebra generated
by all arrows of the quiver.

88 See [162] for more details.
89 More generally, we say that a triangle category is `-CY (for ` ∈ N) iff we have the bifunctorial isomorphism

DHom(X,Y ) ∼= Hom(Y,X[`]).
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where D is the duality functor Homk(−, k) and [1] the shift functor. The simple J(Q,W )-modules

Si can be viewed as Γ-modules via the canonical morphism

Γ→ H0(Γ).

Example 44 (A2 quiver). Consider the A2 quiver 1→ 2. The following is a graded indecomposable

Γ-module:

t∗1 � (k[−1]⊕ k[−3])
a


a∗
k
	
t∗2,

where a = 0, a∗ : k
17→ k[−1], t∗2 = 0, and t∗1 : k[−1]

17→ k[−3]. This object can be generated from

S1[−1], S1[−3] and S2 by successive extensions. Moreover, the modules Si, i = 1, 2 and their shifts

are enough to generate90 all (homologically finite) graded modules.

13.5.1 Seidel-Thomas twists and braid group actions

Simple Γ-modules Si become 3-spherical objects in DbΓ (hence also in DΓ), that is,

Hom(S, S[j]) ∼= k(δj,0 + δj,3).

They yield the Seidel-Thomas [222,229] twist functors TSi . These are autoequivalences of DΓ such

that each object X fits into a triangle

Hom•D(Si, X)⊗k Si → X → TSi(X)→ . (13.3)

By construction, TSi restricts to an autoequivalence of the subcategory DbΓ ⊂ DΓ. From the

explicit realization of TSi as a cone in DΓ, eqn.(13.3), it is also clear that it restricts to an auto-

equivalence of PerΓ.

As shown in [229], the twist functors give rise to a (weak) action on DΓ of the braid group

associated with Q, i.e. the group with generators σi, i ∈ Q0, and relations

σiσj = σjσi

if i and j are not linked by an arrow in Q and

σiσjσi = σjσiσj

if there is exactly one arrow between i and j (no relation if there are two or more arrows).

Definition 30. We write Sph(DbΓ) ⊂ Aut(DbΓ) for the subgroup of autoequivalences generated

by the Seidel-Thomas twists associated to all simple objects Si ∈ DbΓ.

13.5.2 The natural t-structure and the canonical heart

The category DΓ admits a natural t-structure whose truncation functors are those of the natural

t-structure on the category of complexes of vector spaces (because Γ is concentrated in degrees

90 In the triangulated category T , a set of objects Si ∈ T is a generating set if all objects of T can be obtained
from the generating set via an iterated cone construction.
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≤ 0). Thus, we have an induced natural t-structure on DbΓ. Its heart A is canonically equivalent

to the category nil J(Q,W ) of nilpotent modules91 [162]. In particular, the inclusion of A into DbΓ

induces an isomorphism of Grothendieck groups

K0(A) ∼= K0(DbΓ) ∼=
⊕
i

Z[Si].

The skew-symmetric form. Notice that the lattice K0(DbΓ) carries the canonical Euler form

defined by

〈X,Y 〉 =

3∑
i=0

(−1)i dim HomD(Γ)(X,Y [i]). (13.4)

It is skew-symmetric thanks to the 3-Calabi-Yau property (13.2). Indeed it follows from the Calabi-

Yau property and from the fact that ExtiA(L,M) = HomDbΓ(L,M [i]) for i = 0 and i = 1 (but not

i > 1 in general) that for two objects L and M of A ⊂ DbΓ, we have

〈L,M〉 = dim Hom(L,M)− dim Ext1(L,M) + dim Ext1(M,L)− dim Hom(M,L).

Since the dimension of Ext1(Si, Sj) equals the number of arrows in Q from j to i (Gabriel theorem

[14]), we obtain that the matrix of 〈−,−〉 in the basis of the simples of A has its (i, j)-coefficient

equal to the number of arrows from i to j minus the number of arrows from j to i in Q, that is,

(cfr. eqn.(13.1))

〈Si, Sj〉 = Bij . (13.5)

13.5.3 Mutations at category level

The main reference for this subsection is [162]. Let k be a vertex of the quiver Q not lying on a

2-cycle and let (Q′,W ′) be the mutation of (Q,W ) at k. Let Γ′ be the Ginzburg algebra associated

with (Q′,W ′). Let A′ be the canonical heart in DbΓ′. There are two canonical equivalences

DΓ′ → DΓ

given by functors Φ± related by

TSk ◦ Φ− → Φ+.

where, again, TSk is the Seidel-Thomas twist generated by the spherical object Sk. If we put

Pi = Γei, i ∈ Q0, and similarly for Γ′, then both Φ+ and Φ− send P ′i to Pi for i 6= k; the images of

P ′k under the two functors fit into triangles

Pk →
⊕
k→i

Pi → Φ−(P ′k)→ (13.6)

and

Φ+(P ′k)→
⊕
j→k

Pj → Pk. (13.7)

91 If (Q,W ) is Jacobi-finite (as in our applications), nil J(Q,W ) ≡ mod J(Q,W ).
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The functors Φ± send A′ onto the hearts µ±k (A) of two new t-structures. These can be described

in terms of A and the subcategory92 addSk as follows: Let S⊥k be the right orthogonal subcategory

of Sk in A93. Then µ+
k (A) is formed by the objects X of DbΓ such that the object H0(X) belongs

to S⊥k , the object H1(X) belongs to addSk and Hp(X) vanishes for all p 6= 0, 1. Similarly, the

subcategory µ−k (A) is formed by the objects X such that the object H0(X) belongs to the left

orthogonal subcategory ⊥Sk, the object H−1(X) belongs to addSk and Hp(X) vanishes for all

p 6= −1, 0. The subcategory µ+
k (A) is the right mutation of A and µ−k (A) is its left mutation. By

construction, we have

TSk(µ−k (A)) = µ+
k (A).

Since the categories A and µ±(A) are hearts of bounded, non degenerate t-structures on DbΓ, their

Grothendieck groups identify canonically with that of DbΓ. They are endowed with canonical basis

given by the simples. Those of A identify with the simples Si, i ∈ Q0, of nil J(Q,W ). The simples

of µ+
k (A) are Sk[−1], the simples Si of A such that Ext1(Sk, Si) vanishes and the objects TSk(Si)

where Ext1(Sk, Si) is of dimension ≥ 1. By applying T−1
Sk

to these objects we obtain the simples of

µ−k (A).

We saw that DbΓ ⊂ PerΓ as a full subcategory [165]: what is then the meaning of the Verdier

quotient [202] of these two triangulated categories?

13.6 The cluster category

The next result is the main step in the construction of new 2-CY categories with cluster-tilting

object which generalize the acyclic cluster categories introduced by Buan-Marsh-Reineke-Todorov

to categorify the cluster agebras of Fomin and Zelevinski.

Theorem 8 (Thm 2.1 of [5])). Let A be a DG-algebra with the following properties:

1. A is homologically smooth (i.e. A ∈ Per(A⊗Aop)),

2. Hp(A) = 0 for all p ≥ 1,

3. H0(A) is finite dimensional as a k-vector space,

4. A is bimodule 3-CY, i.e.

HomD(A)(X,Y ) ∼= DHomD(A)(Y,X[3]), (13.8)

for any X ∈ D(A) and Y ∈ Db(A).

Then the triangulated category

C(A) = PerA
/
DbA

is Hom-finite, 2-CY, i.e.

HomC(A)(X,Y ) ∼= DHomC(A)(Y,X[2]), X, Y ∈ C(A).

92 Here and below, given a (collection of) object(s) O of a linear category L, by addO we mean the additive closure
of O in L, that is, the full subcategory over the direct summands of finite direct sums of copies of O.

93 Its objects are those M ’s with Hom(Sk,M) = 0. It is a full subcategory of A.
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and the object A is a cluster-tilting object94 with

EndC(A)(A) ∼= H0(A). (13.9)

The category C(A) is called the generalized cluster category and it reduces to the standard

cluster category [159] in the acyclic case. It is triangulated since it is the Verdier quotient of

triangulated categories.95

13.6.1 The case of the Ginzburg algebra of (Q,W )

In particular, we may specialize to the case where A = Γ, i.e. the Ginzburg algebra of a quiver

with potential (Q,W ), and write the following sequence:

0→ DbΓ
s−→ PerΓ

r−→ C(Γ)→ 0 (13.10)

the above theorem states that this sequence is exact and r(Γ) = T , where T is the canonical

cluster-tilting object96 of C(Γ). The first map in eqn.(13.10) is the inclusion map: see [165] for

details.

Remark 13.6.1. Moreover, an object M ∈ PerΓ belongs to the subcategory DbΓ if and only if

the space HomPerΓ(P,M) is finite-dimensional for each P ∈ PerΓ. In particular, this implies that

there is a duality between the simple objects Si ∈ DbΓ and the projective objects Γei ∈ PerΓ

〈Γei, Sj〉 = δij . (13.11)

Theorem 9 (Keller [164]). The completed Ginzburg DG algebra Γ(Q,W ) is homologically smooth

and bimodule 3-Calabi-Yau.

We have already shown that Γ(Q,W ) is non zero only in negative degrees, and thatH0(Γ(Q,W )) ∼=
J(Q,W ). Therefore by the theorem above we get the following

Corollary 13.6.1. Let (Q,W ) be a Jacobi-finite quiver with potential. Then the category

C(Γ(Q,W )) := PerΓ(Q,W )
/
Db(Γ(Q,W ))

is Hom-finite, 2-Calabi-Yau, and has a canonical cluster-tilting object97 whose endomorphism alge-

bra is isomorphic to J(Q,W ).

We shall write C(Γ(Q,W )) simply as C(Γ) leaving (Q,W ) implicit.

94 See Definition 31.
95 The main references for these categorical facts are [105, 202]. We recall the definition of Verdier quotient of

triangle categories:

Lemma. Let D be a triangulated category. Let D′ ⊂ D be a full triangulated subcategory. Let S ⊂ Mor(D) be the
subset of morphisms such that there exists a distinguished triangle (X,Y, Z, f, g, h) ∈ D with Z isomorphic to an
object of D′. Then S is a multiplicative system compatible with the triangulated structure on D.

Definition. Let D be a triangulated category. Let B be a full triangulated subcategory. We define the (Verdier)
quotient category D/B by the formula D/B = S−1D, where S is the multiplicative system of D associated to B via
the previous lemma.

96 See Definition 31.
97 See Definition 31.
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13.6.2 The cluster category of a hereditary category

The above structure simplifies in the case of a cluster category arising from a hereditary (Abelian)

categoryH (with a Serre functor and a tilting object) [183]. Physically this happens for the following

list of complete N = 2 QFTs [67]: i) Argyres-Douglas of type ADE, ii) asymptotically-free SU(2)

gauge theories coupled to fundamental quarks and/or Argyes-Douglas models of type D, and iii)

SCFT SU(2) theories with the same kind of matter. In terms of quiver mutations classes, they

correspond (respectively) to ADE Dynkin quivers of the finite, affine, and elliptic type98 [67]. In

all these case we have an hereditary (Abelian) category H, with the Serre functor S = τ [1] where

τ is the Auslander-Reiten translation. That is, in their derived category we have

HomDb(H)(X,Y ) ∼= DHomDb(H)(Y, τX[1])

τ is an auto-equivalence of Db(H). The cluster category can be shown to be equivalent to the orbit

category [32,159]

C(H) ∼= Db(H)/〈τ−1[1]〉Z. (13.12)

For future reference, we list the relevant categories H (further details may be found in [73]):

• For Argyres-Douglas of type ADE, we have H ∼= mod k~g, where ~g is a quiver obtained by

choosing an orientation to the Dynkin graph of type g ∈ ADE (all orientations being derived-

equivalent). τ satisfies the equation (for more refined results see [51,194])

τh = [−2], (13.13)

where h is the Coxeter number of the associated Lie algebra g;

• for SU(2) gauge theories coupled to Argyres-Douglas systems of types99 Dp1 , · · · , Dps , we

have H = cohX(p1, . . . , ps), the coherent sheaves over a weighted projective line of weights

(p1, . . . , ps) [131, 183]100. τ acts by multiplication by the canonical sheaf ω, and hence is

periodic iff degω = 0; in general, degω is minus the Euler characteristic of X(p1, . . . , ps),

χ = 2−
∑

i(1− 1/pi). However, τ is always periodic of period lcm(pi) when restricted to the

zero rank sheaves (‘skyskrapers’ sheaves).

13.7 Mutation invariance

We have already stated that mutations correspond to Seiberg-like dualities. Therefore, our cate-

gorical construction makes sense only if it is invariant by mutations: indeed, we do not want the

categories representing the physics to change when we change the mathematical description of the

same dynamics.

The following two results give a connection between the DG categories we just analyzed and

quivers with potentials linked by mutations.

98 In the elliptic type we are restricted to the four types D4, E6, E7 and E8, corresponding to the four tubular
weighted projective lines [131,172,183]. Elliptic D4 is SU(2) with Nf = 4 [67].

99 In our conventions, pi = 1 means the empty matter system, while pi = 2 is a free quark doublet.
100 For a review of the category of coherent sheaves on weighted projective lines and corresponding cluster categories

from a physicist prospective, see [75].
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Theorem 10. Let (Q,W ) be a quiver with potential without loops and i ∈ Q0 not on a 2-cycle in

Q. Denote by Γ := Γ(Q,W ) and Γ′ := Γ(µi(Q,W )) the completed Ginzburg DG algebras.

1. [164] There are triangle equivalences

PerΓ
∼ // PerΓ′

DbΓ
∼ //

?�

OO

DbΓ′
?�

OO

Hence we have a triangle equivalence C(Γ) ∼= C(Γ′).

2. [211] We have a diagram

PerΓ
∼ //

H0

��

PerΓ′

H0

��

mod J(Q,W ) oo
mutation // mod J(µi(Q,W ))

Definition 31. Let C be a Hom-finite triangulated category. An object T ∈ C is called cluster-

tilting (or 2-cluster-tilting) if T is basic (i.e.with pairwise non-isomorphic direct summands) and if

we have

addT =
{
X ∈ C

∣∣ HomC(X,T [1]) = 0
}

=
{
X ∈ C

∣∣ HomC(T,X[1]) = 0
}
.

Note that a cluster-tilting object is maximal rigid (the converse is not always true, see [50]), and

that the second equality in the definition always holds when C is 2-Calabi-Yau.

If there exists a cluster-tilting object in a 2-CY category C, then it is possible to construct

others by a recursive process resumed in the following:

Theorem 11 (Iyama-Yoshino [152]). Let C be a Hom-finite 2-CY triangulated category with a

cluster-tilting object T . Let Ti be an indecomposable direct summand of T ∼= Ti ⊕ T0. Then there

exists a unique indecomposable T ∗i non isomorphic to Ti such that T0⊕T ∗i is cluster-tilting. Moreover

Ti and T ∗i are linked by the existence of triangles

Ti
u→ B

v→ T ∗i
w→ Ti[1] and T ∗i

u′→ B′
v′→ Ti

w′→ T ∗i [1]

where u and u′ are minimal left addT0-approximations and v and v′ are minimal right addT0-

approximations.

These triangles allow to make a mutation of the cluster-tilting object: they are called IY-

mutations.

Proposition 13.7.1 (Keller-Reiten [163]). Let C be a 2-CY triangulated category with a cluster-

tilting object T . Then the functor

FT = HomC(T,−) : C → modEndC(T ) (13.14)

160



induces an equivalence

C
/
addT [1] ∼= modEndC(T ).

If the objects T and T ′ are linked by an IY-mutation, then the categories modEndC(T ) and modEndC(T
′)

are nearly Morita equivalent, that is, there exists a simple EndC(T )-module S, and a simple

EndC(T
′)-module S′, and an equivalence of categories

modEndC(T )
/
addS ∼= modEndC(T

′)
/
addS′.

Moreover, if X has no direct summands in addT [1], then FTX is projective (resp. injective) if and

only if X lies in addT (resp. in addT [2]).

Thus, from Theorem 8 and the above Proposition, we get that in the Jacobi-finite case, for

any cluster-tilting object T ∈ C(Γ) which is IY-mutation equivalent to the canonical one, we have:

C(Γ)
FT ′

xx

FT

''

modEndC(Γ)(T ) oo
mutation // modEndC(Γ)(T

′)

13.8 Grothendieck groups, skew-symmetric pairing, and the index

13.8.1 Motivations from physics

In a quantum theory there are two distinct notions of ‘quantum numbers’: the quantities which

are conserved in all physical processes and, on the other hand, the numbers which are used to

label (i.e. to distinguish) states and operators. If a class of BPS objects is described (in a certain

physical set-up) by the triangle category T, these two notions of ‘quantum numbers’ get identified

as follows:

• conserved quantities: numerical invariants of objects X ∈ T which only depend on their

Grothendieck class [X] ∈ K0(T).101 This is the free Abelian group over the isoclasses of

objects of T modulo the relations given by distinguished triangles of T;

• labeling numbers: correspond to numerical invariants of the objects X ∈ T which are well-

defined, that is, depend only on its isoclass (technically, on their class in the split-Grothendieck

group).

Of course, conserved quantities are in particular labeling numbers. Depending on the category

T there may be or not be enough conserved quantities K0(T) to label all the relevant BPS objects.

In the categorical approach to the BPS sector of a supersymmetric theory, the basic problem

takes the form:

101 In general, the conserved quantum numbers take value in the numeric Grothendieck group K0(T)num. For the
categories we consider in this thesis, the Grothendieck group is a finitely generated Abelian group and the two groups
coincide.
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Problem 3. Given a class of BPS objects A in a specified physical set-up, determine the corre-

sponding triangulated category TA.

The Grothendieck group is a very handy tool to solve this Problem. Indeed, the BPS objects

of A carry certain conserved quantum numbers which satisfy a number of physical consistency

requirements. The allowed quantum numbers take value in an Abelian group AbA, and the con-

sistency requirements endow the group with some extra mathematical structures. Both the group

AbA and the extra structures on it are known from physical considerations (we shall review the

ones of interest in §. 14). Then suppose we have a putative solution TA of the above problem.

We compute its Grothendieck group; if K0(TA) 6∼= AbA, we can rule out TA as a solution of the

above Problem. Even if K0(TA) ∼= AbA, but K0(TA) is not naturally endowed with the required

extra structures, we may rule out TA. On the other hand, if we find that K0(TA) ∼= AbA and

the Grothendieck group is canonically equipped with the physically expected structures, we gain

confidence on the proposed solution, especially if the requirements on K0(TA) are quite restrictive.

Therefore, as a preparation for the discussion of their physical interpretation in section 4, we

need to analyze in detail the Grothendieck groups of the three triangle categories DbΓ, PerΓ, or

C(Γ). These categories are related by the functors s, r which, being exact, induce group homo-

morphisms between the corresponding Grothendieck groups. In all three cases K0(T) is a finitely

generated Abelian group carrying additional structures; later in the thesis we shall compare this

structures with the one required by quantum physics.

13.8.2 The lattice K0(DbΓ) and the skew-symmetric form

The group K0(DbΓ) is easy to compute using the following

Proposition 13.8.1 (Keller [162]). The Abelian category nil J(Q,W ) is the heart of a bounded

t-structure in DbΓ.

Hence, since we assume (Q,W ) to be Jacobi-finite, nil J(Q,W ) ∼= mod J(Q,W ) and

K0(DbΓ) ' K0(mod J(Q,W ))

is isomorphic to the free Abelian group over the isoclasses [Si] of the simple Jacobian modules Si,

that is, K0(DbΓ) ∼= Zn (n being the number of nodes of Q).

DbΓ is 3-CY, and then the lattice K0(DbΓ) is equipped with an intrinsic skew-symmetric pairing

given by the Euler characteristics, see discussion around eqn.(13.4). This pairing has an intepreta-

tion in terms of modules of the Jacobian algebra B ≡ J(Q,W ) ∼= EndC(Γ)(Γ).

Proposition 13.8.2 (Palu [208]). Let X,Y ∈ modB. Then the form

〈X,Y 〉a = dim Hom(X,Y )− dim Ext1(X,Y )− dim Hom(Y,X) + dim Ext1(Y,X)

descends to an antisymmetric form on K0(modB). Its matrix in the basis of simples {Si} is the

exchange matrix B of the quiver Q (cfr. eqn.(13.5)).

In conclusion, for the 3-CY category DbΓ, the Grothendieck group is a rank n lattice equipped

with a skew-symmetric bilinear form 〈−,−〉. We shall refer to the radical of this form as the flavor

lattice Λflav = rad 〈−,−〉.
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13.8.3 K0(PerΓ) ∼= K0(DbΓ)∨

More or less by definition, K0(PerΓ) is the free Abelian group over the classes [Γi] of indecomposable

summands of Γ. Since the general perfect object has infinite homology, there is no well-defined

Euler bilinear form. However, eqn.(13.8) implies that for X ∈ PerΓ, Y ∈ DbΓ,

HomPer(X,Y [k]) = HomPer(Y,X[k]) = 0 for k < 0 or k > 3

and hence we have a Euler pairing

K0(PerΓ)×K0(DbΓ)→ Z,

under which

〈Γi, Sj〉 = −〈Sj ,Γi〉 = δij .

Thus [Si] and [Γi] are dual basis and both Grothendieck groups are free (i.e. lattices) of rank n.

Then we have two group isomorphisms

Zn → K0(DbΓ) (m1,m2, . . . ,mn) 7−→
n⊕
i=1

mi[Si] (13.15)

K0(PerΓ)→ Zn [X] 7−→
(
〈X,S1〉, 〈X,S2〉, . . . , 〈X,Sn〉

)
. (13.16)

The image of K0(DbΓ) inside K0(PerΓ) ∼= Zn is isomorphic to the image of B : Zn → Zn where B

is the exchange matrix of the quiver Q.102 We have the obvious isomorphism

K0(PerΓ) ∼= K0(addΓ).

13.8.4 The structure of K0(C(Γ))

From the basic exact sequence of categories (13.10) we get

0 // K0(DbΓ)
s // K0(PerΓ)

r // K0(C(Γ)) // 0

hence

K0(C(Γ)) ∼= Zn
/
B · Zn. (13.17)

K0(C(Γ)) is not a free Abelian group (in general) but has a torsion part which we denote as tH

(and call the ’t Hooft group)

K0(C(Γ)) = K0(C(Γ))free ⊕ tH ∼= Zf ⊕ A⊕ A (13.18)

where f = corankB and A is the torsion group

A =
⊕
s

Z/dsZ, ds | ds+1

102 Note that this image is invariant under quiver mutation.
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where the ds are the positive integers in the normal form of B [31, 203]

B
normal form−−−−−−−−→

f summands︷ ︸︸ ︷
0⊕ 0⊕ · · · ⊕ 0 ⊕

 0 d1

−d1 0

⊕
 0 d2

−d2 0

⊕ · · · ⊕
 0 d`

−d` 0

 (13.19)

13.8.5 The index of a cluster object

Since the rank of the Abelian group K0(C(Γ)) is (in general) smaller than n, the Grothendieck

class is not sufficient to label different objects (modulo deformation). We need to introduce other

‘labeling quantum numbers’ which do the job. This corresponds to the math concept of index (or,

dually, coindex ).

Lemma 13.8.1 (Keller-Reiten [163]). For each object L ∈ C(Γ) there is a triangle

T1 → T0 → L→ with T1, T0 ∈ addΓ.

The difference

[T0]− [T1] ∈ K0(addΓ)

does not depend on the choice of this triangle.

Definition 32. The quantity

ind(L) ≡ [T0]− [T1] ∈ K0(addΓ) ≡ K0(proj J(Q,W )) ∼= K0(PerΓ) ∼= Λ∨

is called the index of the object L ∈ C(Γ).

It is clear from the Lemma that the class [L] ∈ K0(C(Γ)) is the image of ind(L) under the

projection

Λ∨ → Λ∨/B · Λ.

As always, we use the canonical cluster-tilting object Γ; the modules FΓΓi ∈ mod J(Q,W ); are

the indecomposable projective modules (cfr. Proposition 13.7.1). We write Si ≡ TopFΓΓi ∈
mod J(Q,W ) for the simple with support at the i-th node.

Lemma 13.8.2 (Palu [207]). Let X ∈ C(Γ) be indecomposable. Then

indX =

{
−[Γi] X ∼= Γi[1]∑n

i=1〈FΓX,Si〉 [Γi] otherwise,

where 〈−,−〉 is the Euler form in mod J(Q,W ).

Remark 13.8.1. The dual notion to the index is the coindex [207]. For X ∈ C(Γ) one has

indX = −coindX[1] (13.20)

coindX − indX =

n∑
i=1

〈Si, FΓX〉a [Γi] (13.21)

coindX − indX depends only on FΓX ∈ mod J(Q,W ). (13.22)
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From (13.21) it is clear that the projections in K0(C(Γ)) of the index and coindex agree.

The precise mathematical statement corresponding to the rough idea that the ‘index yields

enough quantum numbers to distinguish operator’ is the following

Theorem 12 (Dehy-Keller [86]). Two rigid objects of C(Γ) are isomorphic if and only if their

indices are equal.

Remark 13.8.2. We shall show in §.14.2 how this is related to UV completeness of the corre-

sponding QFT.

13.9 Periodic subcategories, the normalized Euler and Tits forms

We have seen that the group K0(DbΓ) has an extra structure namely a skew-symmetric pairing.

It is natural to look for additional structures on the group K0(C(Γ)). The argument around (13.4)

implies that the Euler form of the 2-CY category C(Γ) if defined is symmetric:

〈X,Y 〉C(Γ) ≡
∑
k∈Z

(−1)k dim HomC(Γ)(X,Y [k]) =

=
∑
k∈Z

(−1)2−k dim HomC(Γ)(Y,X[2− k]) = 〈Y,X〉C(Γ).

However the sum in the rhs is typically not defined, since it is not true (in general) that HomC(Γ)(X,Y [k]) =

0 for k � 0. In order to remediate this, we introduce an alternative concept.

Definition 33. We say that a full subcategory F(p) ⊂ C(Γ), closed under shifts, direct sums and

summands, is p-periodic (p ∈ N) iff the functor [p] restricts to an equivalence in F(p), and F(p) is

maximal with respect to these properties. Note that we do not require p to be the minimal period.

Lemma 13.9.1. A p-periodic sub-category, F(p) ⊂ C(Γ), is triangulated and 2-CY103 and the

inclusion functor F(p)
p−→ C(Γ) is exact.

Proof. Since F(p) is closed under shifts, direct sums, and summands in C(Γ), it suffices to verify

that X,Y ∈ F(p) implies Z ∈ F(p) for all triangles X → Y → Z → in C(Γ). Applying [p] to the

triangle, one gets Z[p] ' Z.

Definition 34. Let F(p) ⊂ C(Γ) be p-periodic. We define the normalized Euler form as

〈〈X,Y 〉〉 = 〈〈Y,X〉〉 =
1

p

p−1∑
k=0

(−1)k dim HomC(Γ)(X,Y [k]), X, Y ∈ F(p). (13.23)

Note that it is independent of the chosen p as long as Y [p] ∼= Y .

Remark 13.9.1. If p is odd, 〈〈−,−〉〉 ≡ 0.

103 F(p) is linear, Hom-finite, and 2-CY. However, it is not necessarily a generalized cluster category since it may or
may not have a tilting object. The prime examples of such a category without a tilting object are the cluster tubes,
see [31,32]. Sometimes the term ‘cluster categories’ is extended also to such categories.
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Proposition 13.9.1. The normalized Euler form 〈〈−,−〉〉 induces a symmetric form on the group

K0(F(p))/K0(F(p))torsion,

which we call the Tits form of F(p).

Remark 13.9.2. We shall see in §. 15.3.3 the physical meaning of the periodic sub-categories and

their Tits form.

13.9.1 Example: cluster category of the projective line of weights (2,2,2,2)

As an example of Tits form in the sense of the above Proposition, we consider the cluster category

(see §.13.6.2)

C = Db(H)
/
〈τ−1[1]〉Z, where H = cohX(2, 2, 2, 2)

which corresponds to SU(2) SQCD with Nf = 4 [73, 75]. We may think of this cluster category

as having the same objects as cohX(2, 2, 2, 2) and extra arrows [32]. In this case degω = 0, and

hence the category C is triangulated and periodic of period p = 2 in the sense of Definition 33,

so F(2) is the full cluster category C. We write O for the structure sheaf and Si,0 for the unique

simple sheaf with support at the i-th special point such that HomcohX(O,Si,0) ∼= k. The cluster

Grothedieck group K0(C) is generated by [O] and [Si,0] (i = 1, 2, 3, 4) subjected to the relation [31]

2[O] =
4∑
i=1

[Si,0]. (13.24)

Thus we may identify

K0(C) ∼=
{

(w1, w2, w3, w4) ∈
(

1
2Z
)2 ∣∣∣ wi = wj mod 1

}
≡ Γweight, spin(8).

by writing a class as
∑

iwi[Si,0]. The Tits pairing is

〈〈[Si,0], [Sj,0]〉〉 = δi,j ,

Then K0(C) equipped with this pairing is isomorphic to the spin(8) weight lattice equipped with

its standard inner product (valued in 1
2Z) dual to the even one given on the root lattice by the

Cartan matrix. We remark that a class in K0(C) is a spinorial spin(8) weight iff it is of the form

k[O] +
∑

imi[Si,0] (mi ∈ Z) with k odd. The physical meaning of this statement and eqn.(13.24)

will be clear in §. 15.3.4.

13.10 Stability conditions for Abelian and triangulated categories

We start with the Abelian category case, since it all boils down to it. The main reference for this

part is [44]. Let A be an Abelian category and K0(A) its Grothendieck group.

Definition 35. A Bridgeland stability condition on an Abelian category A is a group homomor-

phism

Z : K0(A)→ C,
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satisfying certain properties:104

1. Z(A) ⊂ H \ R>0, the closed upper half plane minus the positive reals;

2. If Z(E) = 0, then E = 0. This allows to define the map

argZ(−) : K0(A) \ {0} → (0, π];

3. The Harder-Narasimhan (HN) property. Every object E ∈ A admits a filtration

0 = E0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ En = E,

such that, for each i:

• Ei+1/Ei is Z-semistable;105

• argZ(Ei+1/Ei) > argZ(Ei+2/Ei+1).

We also have the following

Definition 36. An object E ∈ A is called Z-stable if for all nonzero proper subobjects E0 ⊂ E,

argZ(E0) < argZ(E).

If ≤ replaces <, then we get the definition of Z-semistable.

We are now going to give the corresponding definitions for the triangulated categories. The

definition is more involved since there is no concept of subobject.

Definition 37. A slicing P of a triangulated category ∆ is a collection of full additive subcategories

P(φ) for each φ ∈ R satisfying

1. P(φ+ 1) = P(φ)[1];

2. For all φ1 > φ2 we have Hom(P(φ1),P(φ2)) = 0;

3. For each 0 6= E ∈ ∆ there is a sequence φ1 > φ2 > · · · > φn of real numbers and a sequence

of exact triangles

0 = E0
// E1

//

~~

· · · · · · // En−1
// En = E

zz

A1

cc

· · · An

bb

with Ai ∈ P(φi) (which we call the Harder-Narasimhan filtration of E).

Remark 13.10.1. We call the objects in P(φ) semistable of phase φ.

And finally, the definition of stability conditions in a triangulated category.

104 If [X] ∈ K0(A) is the class of X ∈ A, we write simply Z(X) for Z([X]).
105 See below Definition 36 of semistability of objects in an abelian category.
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Definition 38. A stability condition on a triangulated category ∆ is a pair (Z,P) where Z :

K0(∆)→ C is a group homomorphism (called central charge) and P is a slicing, so that for every

0 6= E ∈ P(φ) we have

Z(E) = m(E) eiπφ

for some m(E) ∈ R > 0.

Indeed, the following proposition shows that to some extent (once we identify a t-structure),

stability is intrinsically defined. It also describes how stability conditions are actually constructed:

Proposition 13.10.1 ( [44]). Giving a stability condition (Z,P) on a triangulated category ∆ is

equivalent to giving a heart A of a bounded t-structure with a stability function ZA : K0(A) → C
such that (ZA,A) have the Harder-Narasimhan property, i.e. any object in A has a HN-filtration

by ZA-stable objects.

We will focus on how to obtain a stability condition from the datum (ZA,A), as this is how

stability conditions are actually constructed:

Proof. If A is the heart of a bounded t-structure on ∆, then we have K0(∆) = K0(A), so clearly Z

and ZA determine each other. Given (ZA,A), we define P(φ) for φ ∈ (0, 1] to be the ZA-semistable

objects in A of phase φ(E) = φ. This is extended to all real numbers by P(φ+n) = P(φ)[n] ⊂ A[n]

for φ ∈ (0, 1] and 0 6= n ∈ Z. The compatibility condition

1

π
argZ(E) = φ

is satisfied by construction, so we just need show that P satisfies the remaining properties in

our definition of slicing. The Hom-vanishing condition in definition 37 follows from the definition

of heart of a bounded t-structure. Finally, given E ∈ ∆, its filtration by cohomology objects

Ai ∈ A[ki], and the HN-filtrations 0 → Ai1 → Ai2 → · · · → Aimi = Ai given by the HN-property

inside A can be combined into a HN-filtration of E: it begins with

0→ F1 = A11[k1]→ F2 = A12[k1]→ · · · → Fm1 = A1[k1] = E1,

i.e. with the HN-filtration of A1. Then the following filtration steps Fm1+i are an extensions of

A2i[k2] by E1 that can be constructed as the cone of the composition A2i[k2]→ A2[k2]→[1] E1 (the

octahedral axiom shows that these have the same filtration quotients as 0→ A21[k2]→ A22[k2] · · · );

continuing this way we obtain a filtration of E as desired. Conversely, given the stability condition,

we set A = P((0, 1]) as before; by the compatibility condition, the central charge Z(E) of any

P-semistable object E lies in H \ R>0; since any object in A is an extension of semistable ones,

this follows for all objects in A by the additivity. Finally, it is fairly straightforward to show that

Z-semistable objects in A are exactly the semistable objects with respect to P.

14 Some physical preliminaries

In the next section we shall relate the various triangle categories introduced in the previous section

to the BPS objects of a 4d N = 2 QFT as described from two different points of view: i) the

168



microscopic UV description (i.e. in terms of a UV complete Lagrangian description or a UV fixed-

point SCFT), and ii) the effective Seiberg-Witten IR description. Before doing that, we discuss

some general properties of these physical systems. As discussed in §. 13.8.1, the categories TA which

describe the BPS objects should enjoy the categorical versions of these physical properties in order

to be valid solutions to the Problem in §. 13.8.1.

14.1 IR viewpoint

14.1.1 IR conserved charges

The Seiberg-Witten theory [228] describes, in a quantum exact way, the low-energy physics of

our 4d N = 2 model in a given vacuum u along its Coulomb branch. Assuming u and the mass

deformations to be generic, the effective theory is an Abelian gauge theory U(1)r coupled to states

carrying both electric and magnetic charges. The flavor group is also Abelian U(1)f , so that the IR

conserved charges consist of r electric, r magnetic, and f flavor charges. In a non-trivial theory the

gauge group is compact, and the flavor group is always compact, so these charges are quantized.

Then the conserved charges take value in a lattice Λ (a free Abelian group) of rank

n = 2r + f.

The lattice Λ is equipped with an extra structure, namely a skew-symmetric quadratic form

〈−,−〉 : Λ× Λ→ Z,

given by the Dirac electro-magnetic pairing. The radical of this form,

Λflav = rad 〈−,−〉 ≡
{
λ ∈ Λ

∣∣∣ 〈µ, λ〉 = 0 ∀ µ ∈ Λ
}
⊂ Λ,

is the lattice of flavor charges and has rank f . The effective theory has another bosonic complex-

valued conserved charge, namely the central charge of the 4dN = 2 superalgebra Z := εαβεAB{QAα , QBβ }.
Z is not an independent charge but a linear combination of the charges in Λ with complex coeffi-

cients which depend on all IR data, and in particular on the vacuum u. Hence, for a given u, the

susy central charge is a linear map (group homomorphism)

Zu : Λ→ C.

Any given state of charge λ ∈ Λ has mass greater than or equal to |Zu(λ)|. BPS states are the ones

which saturate this bound.

In the case of a 4d N = 2 with a UV Lagrangian formulation, r and f are the ranks of the

(non-Abelian) gauge G and flavor F groups, respectively. At extreme weak coupling, the IR electric

and flavor charges are the weights under the respective maximal tori.

14.1.2 The IR landscape vs. the swampland

The IRN = 2 theories we consider are not generic Abelian gauge theories with electric and magnetic

charged matter. They belong to the landscape (as opposed to the swampland), that is, they have
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a well defined UV completion. Such theories have special properties.

One property which seems to be true in the landscape, is that there are “enough” conserved IR

charges to label all BPS states, so we don’t need extra quantum numbers to distinguish the BPS

objects in the IR description. This condition is certainly not sufficient to distinguish the landscape

from the swampland, but it plays a special role in our discussion.

To support the suggestion that being UV complete is related to Λ being large enough to label

IR objects, we mention a simple fact.

Fact. Let the UV theory consists of a N = 2 gauge theory with semi-simple gauge group G and

quark half-hypermultiplets in the (reducible) quaternionic representation H. Assume that the beta-

functions of all simple factor of G are non-positive. In the IR theory along the Coulomb branch,

consider the BPS hypermultiplets hi with zero magnetic charge and write [hi] for their IR charges

in Λ. Then

[hi] = [hj ] and hi 6= hj ⇒ [hi] ∈ Λflav.

That is, the charges in Λ are enough to distinguish (zero magnetic charge) hypermultiplets unless

they carry only flavor charge (i.e. are electrically neutral).

Remark 14.1.1. The hypermultiplets with purely flavor charge (called “everywhere light” since

their mass is independent of the Coulomb branch parameters) just decouple in the IR, so in a sense

they are no part of the IR picture.

To show the above fact, just list for all possible gauge group all representations compatible

with non-positivity of the beta-function. Check, using Weyl formula, that the multiplicities of all

weights for these representations is 1 except for the zero weight.

14.2 UV line operators and the ’t Hooft group

14.2.1 ’t Hooft theory of quantum phases of gauge theories

We start by recalling the classical arguments by ’t Hooft on the quantum phases of a 4d gauge

theory [144–147]. The basic order operator in a gauge theory is the Wilson line associated to a

(real) curve C in space time and a representation R of the gauge group G,

WR(C) = trR e
−

∫
C A. (14.1)

Here C is either a closed loop or is stretched out to infinity. In the second case we don’t take the

trace and hence the operator depends on a choice of a weight w of the representation R modulo

che action of Weyl group. In the N = 2 case, the Wilson line (14.1) is replaced by its half-BPS

counterpart [127] which, to preserve half supersymmetries should be stretched along a straight line

L; we still denote this operator as Ww(L).106

What are the quantum numbers carried by Ww(L)? This class of UV line operators is labelled

by (the Weyl orbit of) the weight w, so gauge weights are useful quantum numbers. However, these

numbers do not correspond to conserved quantities in a general gauge theory. For instance, consider

pure (super-)Yang-Mills theory and let R be the adjoint representation. Since an adjoint Wilson

106 The half-BPS lines are also parametrized by an angle ϑ which specifies which susy subalgebra leaves them
invariant. We suppress ϑ from the notation.
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line may terminate at the location of a colored particle transforming in the adjoint representation,

a gluon (gluino) particle-antiparticle pair may be dynamically created out of the vacuum, breaking

the line, see figure 4.

•

•
WR

WR

WR

pair

creation
//

Figure 4: Left: an electric flux tube line created by an adjoint Wilson line. Right: the adjoint

flux line is broken by the creation of a gluon-antigluon pair out of the vacuum.

If our gauge theory is in the confined phase, breaking the line L is energetically favorable, so

the line label w does not correspond to a conserved quantity. On the contrary, a Wilson line in

the fundamental representation cannot break in pure SU(N) (S)YM, since there is no dynamical

particle which can be created out of the vacuum where it can terminate. The obstruction to breaking

the line is the center Z(SU(N)) ∼= ZN of the gauge group under which all local degrees of freedom

are inert while the fundamental Wilson line is charged. Stated differently, the gluons may screen

all color degrees of freedom of a physical state but the center of the gauge group. The conclusion

is that the conserved quantum numbers of the line operators WR(L) consist of the representation

R seen as a representation of the center of the gauge group, Z(G), which take value in the dual

group Z(G)∨ ∼= Z(G). On the other hand, in SU(N) (S)QCD we have quarks transforming in the

fundamental representation; hence a quark-antiquark pair may be created to break a fundamental

Wilson line. Then, in presence of fundamental matter, Wilson lines do not carry any conserved

quantum number. In general, the conserved quantum numbers of the Wilson lines of a gauge theory

with gauge group G take value in the finite Abelian group π1(Geff)∨ ∼= π1(Geff), where Geff is the

quotient group of G which acts effectively on the microscopic UV degrees of freedom.

For clarity of presentation, the above discussion was in the confined phase. This is not the case

of the N = 2 theory which we assume to be realized in its Coulomb phase. In the physically realized

phase the line Ww(L) may be stable; then its labeling quantum number w becomes an emergent

conserved quantity of the IR description (see §.14.2.3). However, from the UV perspective, the

only strictly conserved quantum numbers are still the (multiplicative) characters of π1(Geff) which

take value in the group

π1(Geff)∨ ≡ Hom(π1(G), U(1)) ∼= π1(Geff).
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More generally, we may have Wilson-’t Hooft lines [144–147] which carry both electric and

magnetic weights. Their multiplicative conserved quantum numbers take value in the (Abelian) ’t

Hooft group

tH = π1(Geff)∨ ⊕ π1(Geff),

equipped with the canonical skew-symmetric bilinear pairing (the Weil pairing)107

tH× tH→ µ, (x, y)× (x′, y′) 7→ x(y′)x′(y)−1.

The ’t Hooft multiplicative quantum numbers of a line operator, written additively, are just its

electric/magnetic weights (we, wm) modulo the weight lattice of Geff.

The best way to understand the proper UV conserved quantum numbers of line operators is

to consider the different sectors in which we may decompose the microscopic path integral of the

theory which preserve the symmetries of a line operator stretched in the 3-direction in space (that is,

rotations in the orthogonal plane and translations). In a 4d gauge theory quantized on a periodic

3-box of size L we may defined the ’t Hooft twisted path integral [145] (see [146, 147] for nice

reviews)

e−β F (~e,~m,θ,µs,β) ≡ Tr~e,~m

[
e−βH+iθν+µsFs

]
, ~e ∈

(
π1(Geff)∨

)3
, ~m ∈ π1(Geff)3,

where ~e, ~m are ’t Hooft (multiplicative) electric and magnetic fluxes, θ is the instanton angle,

and µs are chemical potentials in the Cartan algebra of the flavor group F . Imposing rotational

invariance in the 1 − 2 plane and taking the Fourier transform with respect to the µs we remain

(at fixed θ) with the quantum numbers

(e3,m3, w) ∈ π1(Geff)∨ ⊕ π1(Geff)⊕
(
weight lattice of F

)
. (14.2)

We shall call the vector (e3,m3, w) the ’t Hooft charge and the group in the rhs the extended ’t

Hooft group.

We stress that the structure of the Weil pairing is required in order to relate the Euclidean

path integral in given topological sectors to the free energy F (~e, ~m, θ, µs, β) with fixed non-abelian

fluxes [145].

Remark 14.2.1. The boundary condition on the Euclidean box which corresponds to a given ’t

Hooft charge does no break any supercharges, that is, we do not need to specify a BPS angle ϑ to

define it.

14.2.2 Non-Abelian enhancement of the flavor group in the UV

Consider a UV complete N = 2 gauge theory. In the IR theory the flavor group is (generically)

Abelian of rank f . In the UV the masses are irrelevant and the flavor group enhances from the

Abelian group U(1)f to some possibly non-Abelian rank f Lie group F . The free part of the ’t Hooft

group (14.2) is then the weight lattice of F . This weight lattice is equipped with a quadratic form

107 As always, µ denotes the group of roots of unity. The name ‘Weil pairing’ is due to its analogy with the Weil
pairing in the torsion group of a polarized Abelian variety which arises in exactly the same way.
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dual to the Cartan form on the root lattice. From the quadratic form we recover the non-Abelian

Lie group F . In conclusion:

Fact. The UV conserved quantities are encoded in the extended ’t Hooft group, a finitely generated

Abelian group of the form

π1(Geff)∨ ⊕ π1(Geff)⊕ Γflav,weight, (14.3)

whose free part has rank f . The extended ’t Hooft group (14.3) is equipped with two additional

structures: i) the Weil pairing on the torsion part, ii) the dual Cartan symmetric form on the free

part. Moreover, iii) the UV lines carry an adjoint action of the half quantum monodromy K (see

§. 14.3) which acts on the ’t Hooft group as −1.

Finer structures on the ’t Hooft group. The ’t Hooft group (14.3) detects the global topology

of the gauge group Geff; it also detects the topology of the flavor group F , e.g. it distinguishes

between the flavor groups SO(N) and Spin(N), since they have different weight lattices[
Γspin(N) : Γso(N)

]
= 2.

But there even finer informations on the flavor symmetry which we should be able to recover from

the relevant categories. To illustrate the issue, consider SU(2) SQCD with Nf fundamental hypers.

In the perturbative sector (states of zero magnetic charge) the flavor group is SO(2Nf ), but non-

perturbatively it gets enhanced to Spin(2Nf ). More precisely, states of odd (resp. even) magnetic

charge are in spinorial (resp. tensorial) representations of the flavor group Spin(2Nf ). This is due

to the zero modes of the Fermi fields in the magnetic monopole background [228], which is turn are

predicted by the Atiyah-Singer index theorem. The index theorem is an integrated version of the

axial anomaly, so the correlation between magnetic charge and flavor representations should emerge

from the same aspect of the category which expresses the U(1)R anomaly (and the β-function).

14.2.3 The effective ‘charge’ of a UV line operator

We have two kinds of quantum numbers: conserved quantities and labeling numbers. In the IR

we expect (see §.14.1.2) that conserved quantities are (typically) sufficient to label BPS objects.

However, the UV group of eqn.(14.2) is too small to distinguish inequivalent BPS line operators.

We may introduce a different notion of ‘charge’ for UV operators which takes value in a rank

n = 2r + f lattice. This notion, albeit referred to UV objects, depends on a IR choice, e.g. the

choice of a vacuum u. Suppose that in this vacuum we have n species of stable lines Li (i = 1, . . . , n)

which are preserved by the the same susy sub-algebra preserving L and carry emergent IR quantum

numbers [Li] which are Q-linearly independent. We may consider the BPS state |{ni}〉 in which we

have a configuration of parallel stable lines with n1 of type L1, n2 of type L2, and so on. Suppose

that for our BPS line operator L 〈
{n′i}

∣∣L ∣∣{ni}〉 6= 0 (14.4)

It would be tempting to assign to the operator L the ‘charge’∑
i

(n′i − ni)[Li] ∈
⊕
i

Z[Li].
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Such a charge would be well-defined on UV operators provided two conditions are satisfied: i) for

all L we can find a pair of states |{ni}〉, |{n′i}〉 such that eqn.(14.4) holds, and moreover ii) we can

show that n′i − ni does not depend on the chosen |{ni}〉, |{n′i}〉. The attentive reader may notice

that this procedure is an exact parallel to the definition of the index of a cluster object (Definition

32). However the i-th ‘charge’ n′i − ni is PCT-odd only if the lines L, Li carry ‘mutually local

charge’, that is, have trivial braiding; the projection of the ‘charge’ so defined in the ’t Hooft group

(14.3) is, of course, independent of all choices. This follows from the fact that the action of PCT

on the UV lines is given by the half quantum monodromy (see §. 14.3) which does not act as −1

on the present ‘effective’ charges; of course, it acts as −1 on the ’t Hooft charges as it should.

14.3 The quantum monodromy

There is one more crucial structure on the UV BPS operators, namely the quantum monodromy

[65,69]. Let us consider first the case in which the UV fixed point is a good regular SCFT. At the

UV fixed point the U(1)r R-symmetry is restored. Let e2πir be the operator implementing a U(1)r
rotation by 2π (it acts on the supercharges as −1). e2πir acts on a chiral primary operator of the UV

SCFT as multiplication by e2πi∆, where ∆ is the scaling dimension of the chiral operator. Suppose

that for all chiral operators ∆ ∈ N, then e2πir = (−1)F acts as 1 on all UV observables. More

generally, if all ∆ ∈ mN for some integer m, the operator (e2πir)m acts as 1 on observables [65,69].

If the theory is asymptotically-free, meaning that the UV fixed point is approached with log-

arithmic deviations from scaling, the above relations get also corrected, in a way that may be

described rather explicitly, see [65] .

Now suppose we deform the SCFT by relevant operators to flow to the original N = 2 theory.

We claim that, although the Abelian R-charge r is no longer conserved, e2πir remain a symmetry in

this set up108 [69]. This is obvious when the dimensions ∆ are integral, since e2πir commutes with

the deforming operator. The quantum monodromy M is the operator induced in the massive theory

from e2πir in this way [65, 69]. It is well defined only up to conjugacy,109 and may be written as a

Kontsevitch-Soibelmann (KS) product of BPS factors ordered according to their phase110 [65, 69]

M =

	∏
λ∈BPS

Ψ(qsλXλ; q)(−1)2sλ . (14.5)

The KS wall-crossing formula [170,171] is simply the statement that the conjugacy class of M, being

an UV datum, is independent of the particular massive deformation as well as of the particular

BPS chamber we use to compute it (see [65,69]).

We may also define the half-monodromy K, such that K2 = M [69]. The effect of the adjoint

action of K on a line operator L is to produce its PCT-conjugate. Then K inverts the ’t Hooft

charges.

108 For the corresponding discussion in 2d, see [68].
109 When the UV fixed point SCFT is non degenerated, the operator M is semisimple, and its conjugacy class is

encoded in its spectrum, that is, the spectrum of dimensions of chiral operators ∆ mod 1.
110 In eqn.(14.5) we use the notations of [69]: the product is over the BPS stable states of charge λ ∈ Λ and spin sλ

taken in the clockwise order in their phase argZu(λ); ψ(z; q) =
∏
n≥0(1 − qn+1/2z)−1 is the quantum dilogarithm,

and the Xλ are quantum torus operators, i.e. they satisfy the algebra XλXλ′ = q〈λ,λ
′〉/2Xλ+λ′ with 〈−,−〉 the Dirac

pairing.
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We summarize this subsection in the following

Fact. If our N = 2 has a regular UV fixed-point SCFT and the dimension of all chiral operators

satisfy ∆ ∈ mN for a certain integer m, then K2m acts as the identity on the line operators. K acts

as −1 on the ’t Hooft charges.

15 Physical meaning of the categories DbΓ, PerΓ, C(Γ)

We start this section by reviewing as quivers with (super)potentials arise in the description of the

BPS sector of a (large class of) 4d N = 2 theories, see [3, 4, 67,72,73,91].

15.1 N = 2 BPS spectra and quivers

We consider the IR physics of a 4d N = 2 model at a generic vacuum u along its Coulomb branch.

We have the IR structures described in §. 14.1.1: a charge lattice Λ of rank n = 2r + f , equipped

with an integral skew-symmetric form given by the Dirac electro-magnetic pairing, and a complex

linear form given by the N = 2 central charge:

〈−,−〉 : Λ× Λ→ Z, Zu : Λ→ C.

A 4d N = 2 model has a BPS quiver at u iff there exists a set of n hypermultiplets, stable in the

vacuum u, such that [4]: i) their charges ei ∈ Λ generate Λ, i.e. Λ ∼= ⊕iZei, and ii) the charge of

each BPS states (stable in u), λ ∈ Λ, satisfies

λ ∈ Λ+ or − λ ∈ Λ+,

where Λ+ = ⊕iZ+ei is the convex cone of ‘particles’ 111. The BPS quiver Q is encoded in the

skew-symmetric n× n exchange matrix

Bij := 〈ei, ej〉 , i, j = 1, · · · , n. (15.1)

The nodes of Q are in one-to-one correspondence with the generators {ei} of Λ. If Bij ≥ 0 then

there are |Bij | arrows from node i to node j; viceversa for Bij < 0.

To find the spectrum of particles with given charge λ =
∑

imiei ∈ Λ+ we may study the effective

theory on their world-line. This is a SQM model with four supercharges [4, 93], corresponding to

the subalgebra of 4d susy which preserves the world-line. A particle is BPS in the 4d sense iff it

is invariant under 4 supersymmetries, that is, if it is a susy vacuum state of the world-line SQM.

The 4-supercharge SQM is based on the quiver Q defined in eqn.(15.1) [4, 93]: to the i–th node

there correspond a 1d U(mi) gauge multiplet, while to an arrow i→ j a 1d chiral multiplet in the

(mi,mj) bifundamental representation of the groups at its two ends. To each oriented cycle in Q

there is associated a single-trace gauge invariant chiral operator, namely the trace of the product

of the Higgs fields along the cycle. The (gauge invariant) superpotential of the SQM is a complex

linear combination of such operators associated to cycles of Q [4]. Since we are interested only in

the susy vacua, we are free to integrate out all fields entering quadratically in the superpotential.

111 As contrasted with ‘antiparticles’ whose charges belong to −Λ+.
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We remain with a SQM system described by a reduced quiver with (super)potential (Q,W ) in the

sense of section 2.

Then the solutions of the SQM F -term equations are exactly the modules X of the Jacobian

algebra112 J(Q,W ) with dimension vector dimX = λ ∈ Λ.

The D-term equation is traded for the stability condition [4]. Given the central charge Zu(−),

we can choose a phase θ ∈ [0, 2π) such that Zu(Λ+) lies inside113 Hθ := eiθH. Given a module

X ∈ mod J(Q,W ), we define its stability function as ζ(X) := e−iθZu(X) ∈ H. The module X is

stable iff

arg ζ(Y ) < arg ζ(X), ∀Y ⊂ X proper submodule.

A stable module X is always a brick, i.e. Endmod J(Q,W )X ∼= C [73].

Keeping into account gauge equivalence, the SQM classical vacuum space is the compact Kähler

variety [4]

Mλ :=
{
X ∈ mod J(Q,W )

∣∣∣X stable, dimX = λ
}/∏

i

GL(mi,C), (15.2)

that is, the space of isoclasses of stable Jacobian modules of the given dimension λ. The space

of SQM quantum vacua is then H∗(Mλ,C) which carries a representation R of SU(2) by hard

Lefschetz [4, 139], whose maximal spin is dimMλ/2; the space-time spin content of the charge λ

BPS particle is114 (
0⊕ 2

)
⊗R.

For example, the charge λ BPS states consist of a (half) hypermultiplet iff the corresponding moduli

space is a point, i.e. if the module X is rigid.

The splitting between particles and antiparticles is conventional: different choices lead to differ-

ent pairs (Q,W ). However all these (Q,W ) should lead to equivalent SQM quiver models. Indeed,

distinct pairs are related by a chain of 1d Seiberg dualities [227]. The Seiberg dualities act on

(Q,W ) as the quiver mutations described in section 2. Indeed, the authors of [94] modeled their

construction on Seiberg’s original work [227].

The conclusion of this subsection is that to a (continuous family of) 4d N = 2 QFT (with

the quiver property) there is associated a full mutation-class of quivers with potentials (Q,W ).

All (Q,W ) known to arise from consistent QFTs are Jacobi-finite, and we assume this condition

throughout.

Using the mathematical constructions reviewed in §. 2, to such an N = 2 theory we naturally

associate the three triangle categories DbΓ, PerΓ, and C(Γ), together with the functors s, r relating

them. We stress that the association is intrinsic, in the sense that the categories are independent

of the choice of (Q,W ) in the mutation-class modulo triangle equivalence (cfr. Theorem 10). Our

next task is to give a physical interpretation to these three naturally defined categories. We start

from the simpler one, DbΓ.

112 From now on the ground field k is taken to be C.
113 H denotes the upper half-plane H := {z ∈ C | Im z > 0}.
114 The Cartan generator of SU(2)R acting on a BPS particle described by a (p, q)-harmonic form on Mλ is (p− q);

however, it is conjectured that only trivial representations of SU(2)R appear [92,127].
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15.2 Stable objects of DbΓ and BPS states

Let Γ be the Ginzburg algebra associated to the pair (Q,W ). Keller proved [162] that the Abelian

category mod J(Q,W ) is the heart of a bounded t-structure in DbΓ. In particular, its Grothendieck

group is

K0(DbΓ) ∼= K0

(
mod J(Q,W )

)
≡ Λ, (15.3)

that is the lattice of the IR conserved charges (§. 14.1.1). Thus, given a stability condition on the

Abelian category mod J(Q,W ), we can extend it to the entire triangular category DbΓ. In partic-

ular, since the semi-stable objects of DbΓ are the elements of P(φ) (cfr. the proof of Proposition

13.10.1), we have two possibilities:

• φ ∈ (0, 1], then the only semistable objects are the semistable objects of mod J(Q,W ) in the

sense of “Abelian category stability” plus the zero object of DbΓ;

• φ 6∈ (0, 1], then the only semistable objects are the shifts of the semistable objects of

mod J(Q,W ) in the sense of “Abelian category stability”.

In other words, a generic object E ∈ DbΓ is unstable if it has a nontrivial HN filtration. Thus, up

to shift [n], the only possible semistable objects in DbΓ are those objects belonging to the heart

mod J(Q,W ) that are “Abelian”-stable in it. We have already seen that the category mod J(Q,W )

describes the BPS spectrum of our 4d N = 2 QFT: by what we just concluded, the isoclasses of

stable objects X of DbΓ with Grothendieck class [X] = λ ∈ Λ are parametrized, up to even shifts115,

by the Kähler manifolds Mλ
∼= M−λ in eqn.(15.2) whose cohomology yields the BPS states.

The category P(φ) is an Abelian category in its own right. The stable objects with BPS phase

eiπφ are the simple objects in this category; in particular they are bricks in P(φ) hence bricks in

mod J(Q,W ), that is,

X stable ⇒ Endmod J(Q,W )(X) ∼= C.

15.3 Grothendieck groups vs. physical charges

When the triangle category T describes a class of BPS objects, the Abelian groupK0(T ) is identified

with the conserved quantum numbers carried by those objects. In particular, the group K0(T )

should carry all the additional structures required by the physics of the corresponding BPS objects,

as described in §. 14.

Let us pause a while to discuss the Grothendieck groups of the three triangle categories K0(T ),

where T = DbΓ, PerΓ, or C(Γ), and check that they indeed possess all properties and additional

structures as required by their proposed physical interpretation.

15.3.1 K0(DbΓ)

Since DbΓ describes BPS particles, K0(DbΓ) is just the IR charge lattice Λ, see eqn.(15.3). Physi-

cally, the charge lattice carries the structure of a skew-symmetric integral bilinear form, namely the

Dirac electromagnetic pairing. This matches with the fact that, since DbΓ is 3-CY, its Euler form

(13.4) is skew-symmetric and is identified with the Dirac pairing (compare eqn.(15.1) and the last

115 Since the shift by [1] acts on the BPS states as PCT, it is quite natural to identify the BPS states associated to
stable objects differing by even shifts.
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part of Proposition 13.8.2). We stress that the pairing is intrinsic (independent of all choices)

as it should be on physical grounds.

15.3.2 K0(C(Γ)): structure

The structure of the group K0(C(Γ)) was described in §. 13.8.4. We have

K0(C(Γ)) = Zf ⊕ A∨ ⊕ A (15.4)

where A is the torsion group116

A =
⊕
s

Z/dsZ, ds | ds+1

where the ds are the positive integers appearing in the normal form of B, see eqn.(13.19).

The physical meaning of the Grothendieck group (15.4) is easily understood by considering the

case of pure N = 2 super-Yang-Mills with gauge group G. Then one shows [76]

A = Z(G) ≡ the center of the (simply-connected) gauge group G

that is

K0(C(ΓSYM,G)) ∼= Z(G)∨ ⊕Z(G).

This is exactly the group of multiplicative quantum numbers labeling the UV Wilson-’t Hooft line

operators in the pure SYM case [144], as reviewed in §. 14.2.1. This strongly suggests the identi-

fication of the cluster Grothendieck group K0(C(Γ)) with the group of additive and multiplicative

quantum numbers carried by the UV line operators.

This is confirmed by of the example of N = 2 SQCD with (semi-simple) gauge group G and

quark hypermultiplets in a (generally reducible) representation R. One finds [76]

K0(C(ΓSQCD)) ∼= ZrankF ⊕ π1(Geff)∨ ⊕ π1(Geff),

where F is the flavor group and Geff is the quotient of G acting effectively on the UV degrees of

freedom. Again, this corresponds to the UV extended ’t Hooft group as defined in §. 14.2.1. More

generally one has:

Fact. In all N = 2 theories with a Lagrangian formulation (and a BPS quiver) we have

K0(C(Γ)) ∼=
(
the extended ’t Hooft group of §. 14.2.1

)
.

This is already strong evidence that the cluster category C(Γ) describes UV line operators. For

N = 2 theories without a Lagrangian, we adopt the above Fact as the definition of the extended

’t Hooft group.

From Fact 14.2.2 we know that the physical ’t Hooft group has three additional structures.

Let us show that all three structures are naturally present in K0(C(Γ)).

116 Of course, A∨ ∼= A; however it is natural to distinguish the group and its dual.

178



15.3.3 K0(C(Γ)): action of half-monodromy and periodic subcategories

There is a natural candidate for the half-monodromy: on X ∈ C(Γ), K acts as X 7→ X[1] and hence

the full monodromy as X 7→ X[2]. Then K acts on K0(C(Γ)) as −1, as required. Let us check that

this action has the correct physical properties e.g. the right periodicity as described in Fact 14.3.

Example 45 (Periodicity for Argyres-Douglas models). We use the notations of §. 13.6.2. We

know that the quantum monodromy M has a periodicity117 equal to (a divisor of) h + 2 [69],

corresponding to the fact that the dimension of the chiral operators ∆ ∈ 1
h+2N. Indeed, from the

explicit description of the cluster category, eqn.(13.12), we have C(g) = Db(modCg)/〈τ−1[1]〉Z, so

that τ ∼= [1] in C(g). Hence,

Mh+2 ≡ [h+ 2] ∼= τh[2] = Id,

where we used eqn.(13.13).

Under the identification K↔ [1], we may rephrase Fact 14.3 in the form:

Fact. Let C(Γ) be the cluster category associated to a N = 2 theory with a regular UV fixed-point

SCFT such that all chiral operators have dimensions ∆ ∈ mN. Then C(Γ) is periodic with minimal

period p | 2m. If the theory has flavor charges, p is even (more in general: p is even unless the

’t Hooft group is a vector space over F2). In particular, for N = 2 theories with a regular UV

fixed-point the cluster Tits form 〈〈[X], [Y ]〉〉 is well-defined.

Asymptotically-free theories. It remain to discuss the asymptotically-free theories. The asso-

ciate cluster categories C(Γ) are not periodic. However, from the properties of the ’t Hooft group,

we expect that, whenever our theory has a non-trivial flavor symmetry, C(Γ) still contains a periodic

sub-cluster category of even period. We give an informal argument corroborating this idea which

may be checked in several explicit examples.

Sending all non-exactly marginal couplings to zero, our asymptotically-free theory reduces to a

decoupled system of free glue and UV regular matter SCFTs. Categorically, this means that cluster

category of each matter SCFT, Cmat embeds as an additive sub-category in C(Γ) closed under shifts

(by PCT). The embedding functor ι is not exact (in general), so we take the triangular hull of the

full subcategory over the objects in its image Hu4
(
(ι Cmat)full

)
⊂ C(Γ). If the model has non-trivial

flavor, at least one matter subsector has non trivial flavor, and the corresponding category Cmatter

is periodic of even period p. Its objects satisfy X[p] ∼= X and this property is preserved by ι.

The triangle category Hu4
(
(ι Cmat)full

)
is generated by these periodic objects and hence is again

periodic of period p. Then set

F(p) = Hu4
(
(ι Cmat)full

)
.

Again, the flavor Tits form is well defined.

The above discussion shows that the presence of a p-periodic subcategory F(p) ⊂ C is related

to the presence of a sector in the N = 2 theory described by susy protected operators of dimension

∆ = 2
pN.

Let us present some simple examples.

117 For the relation of this fact with the Y -systems, see [65] .
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Example 46 (Pure SU(2) SYM). The cluster category CSU(2) is not periodic; this is a manifes-

tation of the fact that the β-function of the theory is non zero [73]. However, let us focus on the

perturbative (≡ zero magnetic charge) sector in the gYM → 0 limit. The chiral algebra is generated

by a single operator of dimension ∆ = 2, namely tr(φ2). Hence we expect that the zero-magnetic

charge sector is described by a subcategory of CSU(2) which is 1-periodic. Indeed, this is correct,

F(1) being a P1 family of homogenous cluster tubes.

Example 47 (SU(2) SYM coupled to Dp Argyres-Douglas). In this case the matter is an Argyres-

Douglas theory of type Dp; the matter half quantum monodromy Kmatter has order (h(Dp) +

2)/ gcd(2, h(Dp)) = p as we may read from the spectrum of chiral ring dimensions of the Argyres-

Douglas model [68]. Thus the matter corresponds to a periodic subcategory F(p) ⊂ C. This

category is a cluster tube of period p [31, 32]. See also [73].

Remark 15.3.1. Equivalently, we may understand that the presence of a non-trivial flavor group

implies the existence of a 2-periodic subcategory F(p) ⊂ C by the fact that the corresponding

conserved super-currents have canonical dimension 1 which cannot be corrected by RG.

15.3.4 K0(C(Γ)): non-Abelian enhancement of flavor

As discussed in §. 14.2.2, the IR flavor symmetry U(1)f gets enhanced in the UV to a non-Abelian

group F . The identification of K0(C(Γ)) with the extended ’t Hooft group requires, in particular,

that its free part is equipped with the correct dual Cartan form for the flavor group F .

In §. 13.9 we defined a Tits form associated to (a periodic subcategory of) C(Γ). This is a

symmetric form on the free part of the Grothendieck group, and is the natural candidate for the

dual Cartan form of the physical flavor group F . Let us check in a couple of examples that this

identification yields the correct flavor group: the cluster category knows the actual non-Abelian

group.

Example 48 (SU(2) with Nf ≥ 1 fundamentals). We use the same notations118 as in §. 13.9.1.

The cluster category is

CNf = Db
(
cohX(

Nf 2′s︷ ︸︸ ︷
2, · · · , 2 )

)/
〈τ−1[1]〉Z.

For Nf 6= 4 this category is not periodic since the canonical sheaf has non-zero degree (in the

physical language: the β-function is non-zero). We are in the situation discussed at the end of

§. 15.3.3, and the present example is also an illustration of that issue.

The 2-periodic triangle 2-CY subcategory F(2)
j−→ C(Nf ) is given by the orbit category of the

derived category of finite-length sheaves. It consists of a P1 family of cluster tubes; in P1 there are

Nf special points whose cluster tubes have period 2. Let Si,k, k ∈ Z/2Z, be the simples in the i-th

special cluster tube, satisfying

Si,k[1] ∼= τSi,k ∼= Si,k+1

and let Sz be the simple over the regular point z ∈ P1, τSz ∼= Sz. Thus [Sz] = 0 and K0(F(2)) is

generated by the [Si,0] (i = 1, . . . , Nf ). The image of K0(F(2)) in K0(C(Nf )) has index 2; indeed

118 However we often write simply X instead of X(p1, . . . , ps) leaving the weights implicit.
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in K0(C(Nf )) we have an extra generator [O] and a relation [31]

2[O] =

Nf∑
i=1

[Si,0] (15.5)

Then as in §. 13.9.1 (for the special case Nf = 4) we have

K0(C(Nf )) ∼=
{

(w1, · · · , wNf ) ∈
(

1
2Z
)Nf ∣∣∣ wi = wj mod 1

}
≡ Γweight, spin(2Nf )

with

〈〈[Si,0], [Sj,0]〉〉 = δi,j ,

that is, K0(C(Nf )) is the spin(2Nf ) weight lattice equipped with the dual Cartan pairing which

is the correct physical extended ’ t Hooft group for this model which has π1(Geff) = 1 and F =

Spin(2Nf ), as expected.

Remark 15.3.2 (Spin(8) triality). The case of Nf = 4 was already presented in §. 13.9.1. In that

case degK = 0 (i.e. β = 0), the theory is UV superconformal, and the cluster category is periodic.

The correlation between magnetic charge and Spin(8) representation becomes the fact that the

modular group PSL(2,Z) acts on the flavor by triality [228], see [75] for details from the cluster

category viewpoint.

15.3.5 Example 48: Finer flavor structures, U(1)r anomaly, Witten effect

The cluster category contains even more detailed information on the UV flavor physics of the

corresponding N = 2 QFT. Let us illustrate the finer flavor structures in the case of SU(2) SYM

coupled to Nf flavors119 (Example 48).

Note that the sublattice K0(F(2)) ⊂ K0(C(Nf )) is the weight lattice of SO(2Nf ); since F(2)

is the cluster sub-category of the ‘perturbative’ (zero magnetic charge) sector, we recover the

finer flavor structures mentioned at the end of §. 14.2.2. In facts, eqn.(15.5) is the image in the

Grothendieck group of the equation which is the categorical expression of the U(1)r anomaly [73].

Indeed, in the language of coherent sheaves, the U(1)r anomaly is measured by the non-triviality

of the canonical sheaf K (think of a (1,1) σ-model: K trivial means the target space is Calabi-Yau,

which is the condition of no anomaly). The coefficient of the β-function, b, is (twice) its degree,120

degK = −χ(X) [73]. As a preparation to the examples of §. 6, we briefly digress to recall how this

comes about.

β-function and Witten effect. The AR translation τ acts on cohX as multiplication by the

canonical sheaf [75,131,183]

τ : A 7→ A⊗K ≡ A⊗O(~ω). (15.6)

119 Or, more generally, to several Argyres-Douglas systems of type D.
120 Notice that degK = 0 does not mean that K is trivial but only that it is a torsion sheaf in the sense that Km ∼= O

for some integer m.
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Hence the U(1)R anomaly and β-function may be read from the action of τ on the derived category

DbcohX which we may identify as the IR category of BPS particles.121 Now, in the cluster category

of a weighted projective line, C(cohX) ≡ Db(cohX)/〈τ−1[1]〉, one has τ ∼= [1], while [1] acts in the

UV as the half-monodromy, that is, as a UV U(1)r rotation by π. In the normalization of ref. [228]

(see their eqn.(4.3)), the complexified SU(2) Yang-Mills coupling at weak coupling, a→∞, is

θ

π
+

8πi

g2
= − b

πi
log a+ · · · ,

Under a U(1)r rotation by π, a → eπia, the vacuum angle shifts as θ → θ − bπ. Since a dyon of

magnetic charge m carries an electric charge mθ/2π mod 1 (the Witten effect [246]), under the

action of τ the IR electric/magnetic charges (e,m) should undergo the flow

τ : (e,m)→ (e−mb/2,m). (15.7)

For an object of Db(cohX) the magnetic (electric) charge correspond to its rank (degree); then

comparing eqns.(15.6),(15.7) we get b = −2 degK = 2χ(X).

Finer flavor structures (§. 14.2.2). The Grothendieck group of cohX(2, . . . , 2) is generated by

[O], [S0], [Si,j ] (i = 1, . . . , Nf , j ∈ Z/2Z) subjected to the relations [S0] = [Si,0] + [Si,1] ∀ i, see

Proposition 2.1 of [31]. The action of τ in K0(cohX) is

[τSi,j ] = [Si,j+1], [τO]− [O] = (Nf − 2)[S0]−
Nf∑
i=1

[Si,0]. (15.8)

The difference [τO]−[O] measures the non-triviality of the canonical sheaf, that is, the β-function/U(1)r
anomaly. In the cluster category, for all sheaf [τA] = −[A], so that [Si,0] = 0 and the second

eqn.(15.8) reduces to (15.5). Hence, as suggested by the physical arguments at the end of §. 14.2.2,

the non-perturbative flavor enhancement SO(2Nf ) → Spin(2Nf ) follows from the counting of the

Fermi zero-modes implied by the axial anomaly.

15.3.6 K0(C(Γ))torsion: the Weil pairing

Let X ∈ C(Γ) The projection

〈Si, FΓX〉 ∈ Zn/BZn,

depends only on [X]. Rewrite the integral vector 〈Si, FΓX〉 in the Z-basis where B takes the normal

form (13.19)(
〈S1, FΓX〉, · · · , 〈Sn, FΓX〉

) normal form basis−−−−−−−−−−−→ (w1, w2, · · · , wf , u1,1, u2,1, · · · , u1,s, u2,s, · · · )
121 Indeed, for Nf ≤ 3, the triangle category DbcohX admits modCĝ as the core of a t-structure (here ĝ is an acyclic

affine quiver in the mutation class of the model [67]; see also Example 51.
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and see its class as an element of (Q2/Z2)r

(w1, w2, · · · , wf , u1,1, u2,1, · · · , u1,s, u2,s, · · · ) 7→
(
u1,1

d1
,
u2,1

d1
, · · · , u1,s

ds
,
u2,s

ds
· · ·
)
∈ (Q2/Z2)r.

The skew-symmetric matrix B then defines a skew-symmetric pairing

2πi

r∑
s=1

εab ua,s u
′
b,s

ds
∈ 2πiQ/Z.

The exponential of this expression is the canonical Weil pairing. Let us check one example.

Example 49 (Pure SU(2)). The basis [P1], [P2] is canonical. Then the Weil pairing is

(Z/2Z)2 × (Z/2Z)2 3 (e,m)× (e′,m′) 7→ (−1)em
′−me′ .

15.4 The cluster category as the UV line operators

We have seen that for a N = 2 theory (with quiver property) the Grothendieck group K0(C(Γ)) is

the extended ’t Hooft group of additive and multiplicative conserved quantum numbers of the UV

line operators and that this group is naturally endowed with all the structures required by physics,

including the finer ones.

This amazing correspondence makes almost inevitable the identification of the the cluster cat-

egory C(Γ) of the mutation-class of quivers with (super)potentials associated to a 4d N = 2 model

with the triangle category describing its UV BPS line operators. This identification has been

pointed out by several authors working from different points of view [68,84,127]. In particular, the

structure of the mutations of the Y –seeds in the cluster algebras lead to the Kontsevich-Soibelman

wall crossing formula [170] (see [65, 68] for details). This is just the action of the shift [1] on the

cluster category which implements the quantum half monodromy K (cfr. §. 15.3.3).

In section 18 below we check explicitly this identification by relating the geometrical description

of the cluster category of a surface as given in the mathematical literature with the WKB analysis

of line operators by GMN [126,127].

For BPS line operators we also had a notion of ‘charge’ which is useful to distinguish them, see

§. 14.2.3. We already mentioned there that both the definition and the properties of this ‘charge’

have a precise correspondent in the mathematical notion of the index of a cluster object. Now we

may identify these two quantities. Note that, while the ’t Hooft charge is invariant under quantum

monodromy (i.e. under the shift [2]), the index is not. This is the effect of non-trivial wall-crossing

and, essentially, measures it [68].

In §. 13.8.5 we saw that the index is fine enough to distinguish rigid objects of the cluster

category. This is reminiscent of our discussion in §.14.1.2 about a (necessary) condition for UV

completeness.

In section §. 19.1, building over refs. [84, 127], we discuss how the interpretation of the cluster

category C(Γ) as describing UV BPS line operators LindX(ζ) (labeled by the index of the cor-

responding cluster object X and the phase ζ of the preserved supersymmetry) leads to concrete
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expressions for their vacuum expectation values in the vacuum u

〈LindX(ζ)〉u.

15.5 The perfect derived category PerΓ

To complete the understanding of the web of categories and functors describing the BPS physics

of a 4d N = 2 theory, it remains to discuss the physical meaning of the perfect category PerΓ. To

the best of our knowledge, an interpretation of the perfect category of a Ginzburg DG algebra has

not appeared before in the physics literature.

We may extract some properties of the BPS objected described by the perfect category already

from its Grothendieck group K0(PerΓ) and the basic sequence of functors

0→ DbΓ
s−→ PerΓ

r−→ C(Γ)→ 0. (15.9)

The Grothendieck group K0(PerΓ) is isomorphic to the IR charge lattice Λ, so PerΓ is a category

of IR BPS objects whose existence (i.e. “stability”) depends on the particular vacuum u. PerΓ

yields the description of these physical objects from the viewpoint of the Seiberg-Witten low-energy

effective Abelian theory. This is already clear from the fact that PerΓ contains the category

describing the IR BPS particles i.e. DbΓ; BPS particles then form part of the physics described by

PerΓ. A general object in PerΓ \DbΓ differs from an object in the category DbΓ in one crucial

aspect: its total homology has infinite dimension, so (typically) infinite susy central charge and

hence infinite energy. Then PerΓ is naturally interpreted as the category yielding the IR description

of half-BPS branes of some kind. They may have infinite energy just because their volume may

be infinite. Although their central charge is not well defined, its phase is: it is just the angle θ

corresponding to the subalgebra of supersymmetries under which the brane is invariant.

On the other hand, the RG functor r in (15.9) associates to each IR object in O ∈ PerΓ \DbΓ

a non-trivial UV line operator r(O). This suggests a heuristic physical picture: let O ∈ PerΓ\DbΓ

describe a BPS brane which is stable in the Coulomb vacuum u; this brane should be identified

with the “state” obtained by acting with the UV line operator r(O) on the vacuum u as seen in

the low-energy Seiberg-Witten effective Abelian theory.

In order to make this proposal explicit, in the next section we shall consider a particular class

of examples, namely the class S[A1] theories [123,126]. In this case all three categories DbΓ, PerΓ

and C(Γ) are explicitly understood both from the Representation-Theoretical side (in terms of

string/band modules [10]) as well as in terms of the geometry of curves on the Gaiotto surface C.

In this setting BPS objects are also well understood from the physical side since WKB is exact in

the BPS sector.

Comparing the mathematical definition of the various triangle categories associated to a class

S[A1] model, and the physical description of the BPS objects, we shall check that the above

interpretation of PerΓ is correct.

15.5.1 “Calibrations” of perfect categories

To complete the story we need to introduce a notion of “calibration” on the objects of PerΓ which

restricts in the full subcategory DbΓ to the Bridgeland notion of stability. The specification of a
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“calibration” requires the datum of the Coulomb vacuum u and a phase θ = πφ ∈ R. Given an

u (corresponding to specifying a central charge Z), the φ-calibrated objects form a full additive

subcategory of PerΓ, K(φ), such that

P(φ) ⊂ K(φ) ⊂ PerΓ, ∀φ ∈ R.

We use the term “calibration” instead of “stability” since it is quite a different notion with respect

to Bridgeland stability (in a sense, it has “opposite” properties), and it does not correspond to the

physical idea of stability. These aspects are already clear from the fact that the central charge Z

is not defined for general objects in PerΓ.

In the special case of the perfect categories arising from class S[A1] QFTs, where everything is

explicit and geometric, the calibration condition may be expressed in terms of flows of quadratic

differentials, see §. 18.

We leave a more precise discussion of calibrations for perfect categories to future work. Here

we limit ourselves to make some observations we learn from the class S[A1] example.

Definition 39. A phase πφ ∈ R is called a BPS phase if the slice P(φ) ⊂ DbΓ contains non-zero

objects. A phase πφ is generic if it is not a BPS phase nor an accumulation point of BPS phases.

Fact. In a class S[A1] theory, assume there is no BPS phase in the range [πφ, πφ′]. Then

K(φ) ∼= K(φ′).

Moreover, let πφ be a generic phase. Then the φ-calibrated category K(φ) ⊂ PerΓ has the form

K(φ) ∼= add Tφ

for an object Tφ ∈ PerΓ such that

r(Tφ) ∈ C(Γ) is cluster-tilting.

In other words, the generic Tφ is a silting object of PerΓ.

We conjecture that something like the above Fact holds for general 4d N = 2 theories.
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Part VI

Homological S-duality
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16 Cluster automorphisms and S-duality

16.1 Generalities

A duality between two supersymmetric theories induces a (triangle) equivalence between the triangle

categories describing its BPS objects. The celebrate example is mirror symmetry between IIA and

IIB string theories compactified on a pair of mirror Calabi-Yau 3-folds, M, M∨. At the level of

the corresponding categories of BPS branes, mirror symmetry duality induces homological mirror

symmetry, that is the equivalences of triangle categories [155,169]

Db(CohM) ∼= Db(FukM∨), Db(CohM∨) ∼= Db(FukM).

In fact, since to a supersymmetric theory T we associate a family of triangle categories,

{T(a)}a∈I , depending on the class of BPS objects and the physical picture (e.g. IR versus UV), a

dual pair of theories T , T ∨, yields a family of equivalences of categories labeled by the index set I

T(a)

d(a)−−−→ T∨(a) a ∈ I.

The several categories associated to the theory, {T(a)}a∈I , are related by physical compatibility

functors having the schematic form

T(a)

c(a,b)−−−−→ T(b) a, b ∈ I

(e.g. the ‘inverse RG flow’ functor r in eqn.(4.1)). Physical consistency of the duality then require

that we have commutative diagrams of functors of the form

T(a)

d(a)
//

c(a,b)

��

T∨(a)

c∨
(a,b)

��

T(b)

d(b)
// T∨(b)

The philosophy of the present review is that the dualities are better understood in terms of such

diagrams of exact functors between the relevant triangle categories. This idea may be applied to

all kinds of dualities; here we are particularly interested in auto-dualities, that is, dualities of the

theory with itself. The prime examples of auto-dualities is S-duality in N = 2∗ SYM and Gaiotto’s

N = 2 generalized S-dualities [123] . One of the motivation of this thesis is to use categorical

methods to compute the group S of S-dualities which generalize the PSL(2,Z) group for N = 2∗

as well as the results by Gaiotto.

An auto-duality induces a family of exact functors d(a) : T(a) → T(a), one for each BPS category

T(a), such that:

a) for all a ∈ I, d(a) is anautoequivalence of the triangle category T(a);
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b) the {d(a)} satisfy physical consistency conditions in the form of commutative diagrams

T(a)

d(a)
//

c(a,b)

��

T(a)

c(a,b)

��

T(b)

d(b)
// T(b)

(16.1)

Definition 40. 1) The group S of generalized auto-dualities is the group of families d(a) of autoe-

quivalences satisfying eqn.(16.1) modulo its subgroup acting trivially on the physical observables.

2) The group S of (generalized) S-dualities is the quotient group of S which acts effectively on the

(UV) microscopic local degrees of freedom of the theory.

Remark 16.1.1. With our definition of the S-duality group, the Weyl group of the flavor group

is always part of the duality group S. It action on the free part of the cluster Grothendieck group

is the natural one on the weight lattice.

Example 50. With this definition, the group S for SU(2) SQCD with Nf = 4 is [75]

SSU(2), Nf=4 = SL(2,Z) o Weyl(SO(8)).

Remark 16.1.2. We shall see in Example 54 that with this definition the S-duality group of a

class S[A1] theory is the tagged mapping class group of its Gaiotto surface, in agreement with the

geometric picture in [123] , see also [107].

16.2 Specializing to N = 2 in 4d

We specialize the discussion to the case of a 4d N = 2 theory having the BPS quiver property. Such

a theory is associated to a mutation-class of quivers with potential, hence to the three categories

DbΓ, PerΓ, C(Γ), discussed in the previous sections. They are related by the compatibility functors

s, r as in the exact sequence (4.1).

Applying Definition 40 to the present set-up, we are lead to consider the diagram of triangle

functors
0 // DbΓ

dD
��

s // PerΓ

dP

��

r // C(Γ)

dC
��

// 0

0 // DbΓ
s // PerΓ

r // C(Γ) // 0

having exact rows and commuting squares, where

dD ∈ AutDbΓ, dP ∈ AutPerΓ, dC ∈ Aut C(Γ).

The group S is the group of such triples (dD, dP, dC) modulo the subgroup which acts trivially on

the observables. The S-duality group S is the image of S under the homomorphism

r : S→ Aut C(Γ)/Aut C(Γ)trivial, (dD, dP, dC) 7→ dC . (16.2)
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16.2.1 The trivial subgroup (AutDbΓ)0

We start by characterizing the subgroup (AutDbΓ)0 ⊂ AutDbΓ of ‘trivial’ auto-equivalences,

i.e. the ones which leave the physical observables invariant. Since the Grothendieck group is

identified with the IR charge lattice Λ, and charge is an observable, (AutDbΓ)0 is a subgroup of

the kernel AutDbΓ → AutK0(DbΓ). Next all % ∈ (AutDbΓ)0 should leave invariant the stability

condition, that is the slicing P(φ), and hence the canonical heart mod J(Q,W ) of DbΓ. Since

% acts trivially on the Grothendieck group, it should fix all simples Si. Hence the projection

AutDbΓ→ AutDbΓ/(AutDbΓ)0 factors through the quotient group

AutphDbΓ := AutDbΓ

/{
autoequivalences preserving the simples Si (element-wise)

}
.

An equivalence in the kernel of the projection AutDbΓ→ AutphDbΓ preserves (Q,W ), the central

charge Z, and the Grothendieck class λ. Hence it maps stable objects of charge λ into stable

objects of charge λ. Comparing with eqn.(15.2), we see that the net effect of an autoequivalence in

the kernel is to produce an automorphism of projective varieties Mλ → Mλ for each λ. Since the

BPS states are the susy vacua of the 1d sigma-model with target space Mλ, this is just a change

of variables in the SQM path integral, which leave invariant all physical observables122. Since

the auto-duality groups are defined modulo transformations acting trivially on the observables,

AuteqDb is the proper auto-duality group SIR at the level of the BPS category DbΓ.

The automorphisms of the quiver extend to automorphisms of DbΓ; let Aut(Q) be the group of

quiver automorphisms modulo the ones which fix the nodes. Clearly,

AutphDbΓ = AuteqDbΓ o Aut(Q),

where

AuteqDbΓ := AutDbΓ

/{
autoequivalences preserving the simples Si (as a set)

}
.

16.2.2 The duality groups S and S

With the notation of section 13.6, Bridgeland in [45] and Goncharov in [133] showed that the

following sequence

0→ SphDbΓ→ AuteqDbΓ→ AutQ(CEG)→ 0 (16.3)

is exact. Here CEG stands for the cluster exchange graph (cfr. §. 13.3.1): the clusters of the cluster

algebra CΓ are the vertices of the CEG and the edges are single mutations connecting two seeds;

AutQ(CEG) is the graph automorphism group that sends the quiver to itself up to relabeling of

the vertices. By construction this graph is connected.

122 The simplest example of such a negligible equivalence is the case of pure SU(2) whose quiver is the Kronecker
quiver, Kr = •⇒ •. The stable representations associated to the W boson are the simples in the homogeneous tube
which form a P1 family (i.e. MW boson ≡ P1) since the W boson belongs to a vector superfield. Then a negligible
auto-equivalence is just a projective automorphism of P1.
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Theorem 13 (Goncharov [133], see also [162]). One has

AutQ(CEG) ⊂ Aut C(Γ),

i.e. the graph automorphisms (see [13]) are a subgroup of the autoequivalences of the cluster cate-

gory.

Note that AuteqDbΓ ≡ AuteqPerΓ, the quotient group of AutPerΓ by the subgroup fixing

the Γi (as a set). Indeed, all autoequivalences of PerΓ preserve the subcategory DbΓ and hence

restrict to autoequivalences of the bounded category; an autoequivalence % ∈ AutPerΓ which does

not preserve the Γi’s restricts to an element %̄ ∈ AutDbΓ which does not preserve the Si’s. Hence

the restriction homomorphism

AuteqPerΓ→ AuteqDbΓ,

is injective. On the other hand, from eqn.(16.3) we see that all autoequivalences in AuteqDbΓ

extend to autoequivalences in AuteqPerΓ: indeed, the objects which are spherical in the sub-

category DbΓ remain spherical and 3-CY in the larger category PerΓ (cfr. eqn.(13.8)), so the

auto-equivalences is SphDbΓ extend to PerΓ; the autoequivalences in AutQ(CEG) are induced by

quiver mutations, and hence induce auto-equivalences of PerΓ.

Comparing with our discussion around eqn.(16.2) we conclude:

Corollary 16.2.1. For a 4d N = 2 theory with the BPS quiver property

S ∼= AuteqDbΓ o Aut(Q), (16.4)

S ∼= AutQ(CEG) o Aut(Q). (16.5)

16.2.3 Example: the group S for SU(2) N = 2∗

The mutation class of SU(2) N = 2∗ contains a single quiver, the Markoff one

QMar ≡
•1 +3 •2

z�
•3

KS

which is the quiver associated to the once punctured torus [67,117]. Clearly Aut(QMar) ∼= Z3, while

all mutations leave QMar invariant up to a permutation of the nodes. Consider the covering graph

C̃EG of CEG where we do not mod out the permutations of the nodes. Then C̃EG is the trivalent

tree whose edges are decorated by {1, 2, 3}, the number attached to an edge corresponding to the

nodes which gets mutated along that edge. One can check that there are no identifications between

the nodes of this tree.

One may compare this ({1, 2, 3}-decorated) trivalent tree with the ({1, 2, 3}-decorated) standard

triangulation of the upper half-plane H given by the reflections of the geodesic triangle of vertices

0, 1,∞ (see ref. [115]). One labels the nodes of a triangle of the standard triangulation by elements

of {1, 2, 3}, and then extends (uniquely) the numeration to all other vertices so that the vertices

of each triangle get different labels. The sides of a triangle are numbered as their opposite vertex.

The dual of this decorated triangulation is our decorated trivalent graph C̃EG, see figure 5. The
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Figure 5: The modular triangulation of the upper half plane and its dual graph C̃EG. The picture
is reproduced from [115].

arithmetic subgroup of the hyperbolic isometry group, PGL(2,Z) ⊂ PGL(2,R) preserves the

standard triangulation of H while permuting the decorations {1, 2, 3}. Since permutations are valid

S-dualities, we get

S ∼= PGL(2,Z) ∼= PSL(2,Z) o Z2

where the extra Z2 may be identified with the Weyl group of the flavor SU(2). Thus we recover as S-

duality group in the usual sense (≡ the kernel of S→Weyl(F )) the modular group PSL(2,Z) [228].

In the case of SU(2) N = 2∗ we have

K0(CMar) ≡ cokerB ∼= Z2 ⊕ Z2 ⊕ Z,

as expected for a quark in the adjoint representation (since π1(Geff) = Z2), with the free part the

weight lattice of SU(2)flav. Hence the flavor Weyl group acts on K0(CMar) as −1, that is, as the

cluster auto-equivalence [1]. Notice that the cluster category is 2-periodic, as expected for a UV

SCFT with integral dimensions ∆.

16.3 Relation to duality walls and 3d mirrors

The UV S-duality group S has a clear interpretation: it is the usual S-duality group of the N = 2

theory (twisted by the flavor Weyl group). What about its IR counterpart S?

For Argyres-Douglas models we can put forward a precise physical interpretation based on the

findings of [70]. Similar statements should hold in general.

Given an element of the S-duality group, σ ∈ S we may construct a half-BPS duality wall in

the 4d theory [97,98,240]: just take the theory for x3 < 0 to be the image through σ of the theory

for x3 > 0 and adjust the field profiles along the hyperplane x3 = 0 in such a way that the resulting

Janus configuration is 1
2 -BPS. It is a domain wall interpolating between two dual N = 2 theories

in complementary half-spaces. On the wall live suitable 3d degrees of freedom interacting with the

bulk 4d fields on both sides [97, 98, 240]. In this construction we may use a UV duality as well as
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an IR one [98]. Hence we expect to get duality walls for all elements of S. An element s ∈ S acts

non-trivially on the central charge Z so, in general, as we go from x3 = −∞ to x3 = +∞ we induce

a non-trivial flow of the central charge Z in the space of stability functions. If limx3→±∞ Z is such

that all the bulk degrees of freedom get an infinite mass and decouple, we remain with a pure 3d

N = 2 theory on the wall. Of course this may happen only for special choices of s. Thus we may

use (suitable) 4d dualities to engineer 3d N = 2 QFTs.

The engineering of 3d N = 2 theories as a domain wall in a 4d N = 2 QFT, by central-charge

flow in the normal direction, is precisely the set-up of ref. [70]. In that paper one started from

a 4d Argyres-Douglas of type g ∈ ADE. The Z-flow along the x3-axis was such that asymptotic

behaviors as x3 → −∞ and x3 → +∞ were related in the UV by the action of the quantum

half-monodromy K, that is, in the categorical language by the shift [1] ∈ S. Two choices of IR

duality elements, s, s′ ∈ S, which produce the half-monodromy in the UV, differ by an element of

the spherical twist group (cfr. eqn.(16.3))

s′s−1 ∈ SphDb.

The arguments at the end of §. 13.5.1 imply that for Argyres-Douglas of type g the group SphDb

is isomorphic to the Artin braid group of type g, Bg.
As the title of ref. [70] implies, the explicit engineering of a 3d N = 2 theory along those lines

requires a specification of a braid, i.e. of an element of Bg. More precisely, in §.5.3.2 of ref. [70] is

given an explicit map (for g = Ar)(
a braid in Bg

)
←→

(
a 3d N = 2 Lagrangian

)
.

So the Lagrangian description/Z-flow engineering of the 3d theories are in one-to-one correspon-

dence with the s ∈ S such that r(s) = [1]. It is natural to think of the 3d Lagrangian theory

associated to s ∈ S as the duality wall associated to the IR duality s. Distinct s lead to 3d theories

which superficially look quite different. However, in this context, 3d mirror symmetry is precisely

the statement that two theories defined by different IR dualities s, s′ ∈ S which induce the same

UV duality, r(s′) = r(s) produce equivalent 3d QFTs. From this viewpoint 3d mirror symmetry is

a bit tautological, since the condition r(s′) = r(s) just says that the two 3d theories have the same

description in terms of 4d microscopic degrees of freedom.

16.4 S-duality for Argyres-Douglas and SU(2) gauge theories

When (Q,W ) is in the mutation-class of an ADE Dynkin graph (corresponding to an Argyres-

Douglas model [3,4]) or of an ÂD̂Ê acyclic affine quiver (corresponding to SU(2) SYM coupled to

matter such that the YM coupling is asymptotically-free [3]) to get S we can equivalently study the

automorphism of the transjective component of the AR quiver associated to the cluster category

C(Γ): the inclusion above is due to the fact that we only consider the transjective component:

Theorem 14 (See [13]). Let C be an acyclic cluster algebra and Γtr the transjective component of

the Auslander-Reiten quiver of the associated cluster category C(Γ). Then Aut+C is the quotient of

the group Aut Γtr of the quiver automorphisms of Γtr, modulo the stabilizer Stab(Γtr)0 of the points
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Q AutQ(CEG) Q AutQ(CEG)

An>1 Zn+3 D4 Z4 × S3

Dn>4 Zn × Z2 E6 Z14

E7 Z10 E8 Z16

Âp,q Hp,q Âp,p>1,1 Hp,p o Z2

D̂4 Z× S4 Â1,1 Z

D̂n>4 G Ê6 Z× S3

Ê7 Z× Z2 Ê8 Z

Table 18: S-duality groups for N = 2 theory with an acyclic quiver.

of this component. Moreover, if Γtr
∼= Z∆, where ∆ is a tree or of type Â then

AutC = Aut+C o Z2

and this semidirect product is not direct.

In order to understand why this is the relevant component, we first recall that the Auslander-

Reiten quiver of a cluster-tilted algebra always has a unique component containing local slices,

which coincides with the whole Auslander-Reiten quiver whenever the cluster-tilted algebra is

representation-finite. This component is called the transjective component and an indecomposable

module lying in it is called a transjective module. With this terminology, the main result is:

Theorem 15 (See [11]). Let C be a cluster-tilted algebra and M,N be indecomposable transjective

C-modules. Then M is isomorphic to N if and only if M and N have the same dimension vector.

Therefore, since the dimension vector is the physical charge, we focus our attention to this class

of autoequivalences. The classification results are summarized in table 18 where

Hp,q := 〈r, s|rp = sq, sr = rs〉
G =

〈
τ, σ, ρ1, ρn|ρ2

1 = ρ2
n = 1, τρ1 = ρ1τ, τρn = ρnτ, τσ = στ, σ2 = τn−3, ρ1σ = σρn, σρ1 = ρnσ

〉
Example 51 (SU(2) with Nf ≤ 3). SU(2) SQCD with Nf = 0, 1, 2, 3 correspond, respectively, to

the following four affine N = 2 theories [67]

Â1,1, Â2,1, Â2,2, D̂4.

A part for the flavor Weyl group Weyl(spin(2Nf )) (cfr. Example 48) we get a duality group Z
generated by the shift [1]. As discussed around eqn.(15.7), this is equivalent to the shift of the

Yang-Mills angle θ

θ → θ − 4π +Nfπ.
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· · · // // • //// •
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//// •
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}}
//// •

τ
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τ

aa
//// •

τ

}}
//// •

τ
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//// •

τ

}}
//// · · ·

τ

bb

Figure 6: The translation quiver ZÂ1,1 (≡ the AR quiver of the transjective component of the
cluster category for pure SU(2)). Dotted arrows stands for the action of the AR translation τ .
Clearly τ is the translation to the left by 2 nodes. The auto-equivalence ξ is translation to the left
by 1 node: ξ2 = τ .

The case Nf = 0 is special; physically one expects that the shift of θ by −2π should also be a valid

S-duality. This shift should correspond to an auto-equivalence ξ of the Nf = 0 cluster category with

ξ2 = τ . Indeed, this is what one obtains from the automorphism of the transjective component see

figure 6. Alternatively, we may see the cluster category of pure SU(2) as the category of coherent

sheaves on P1 endowed with extra odd morphisms [32]. In this language τ acts as the tensor product

with the canonical bundle τ : A 7→ A ⊗ K (cfr. eqn.(15.6)). Let L be the unique spin structure on

P1; we have the obvious auto-equivalence ξ : A 7→ A⊗ L. From L2 = K we see that ξ2 = τ .

17 Computer algorithm to determine the S-duality group

The identification of the S-duality group with AutQ(CEG) yield a combinatoric characterization

of S-dualities which leads to an algorithm to search S-dualities for an arbitrary N = 2 model

having a BPS quiver. This algorithm is similar in spirit to the mutation algorithm to find the BPS

spectrum [3] but in a sense more efficient. The algorithm may be easily implemented on a computer;

if the ranks of the gauge and flavor groups are not too big (say < 10), running the procedure on a

laptop typically produces the generators of the duality group in a matter of minutes.

17.1 The algorithm

The group AutQ(CEG) may be defined in terms of the transformations under quiver mutations of

the d-vectors which specify the denominators of the generic cluster variables [108]. The actions of

the elementary quiver mutation at the k–th node, µk, on the exchange matrix B and the d-vector

di are

µk(B)ij =

{
−Bij , i = k or j = k

Bij + max[−Bik, 0]Bkj +Bik max[Bkj , 0] otherwise.
(17.1)

µk(d)l =

 dl, l 6= k

−dk + max
[∑

i max
[
Bik, 0

]
di,
∑

i max
[
−Bik, 0

]
di

]
l = k

(17.2)

A quiver mutation µ = µksµks−1 · · ·µk1 is the composition of a finite sequence of elementary

quiver mutations µk1 , µk2 , · · · , µks . We write Mut for the set of all quiver mutations. AutQ(CEG)

is the group of quiver mutations which leave invariant the quiver Q up to a permutation π of its
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Figure 7: The CEG of the A2 Argyres-Douglas theory.

nodes, modulo the ones which leave the d-vector invariant up to π:

AutQ(CEG) =

{
µ ∈ Mut

∣∣ ∃π ∈ Sn : µ(B)i,j = Bπ(i),π(j)

}
{
µ ∈ Mut

∣∣ ∃π ∈ Sn : µ(B)i,j = Bπ(i),π(j) and µ(d)i = dπ(i)

} , (17.3)

while S = AutQ(CEG) o Aut(Q).

Example 52 (A2 cluster automorphisms). Consider the quiver •1 → •2. The CEG is the pentagon

in figure 7: every vertex is associated to a quiver of the form •1 → •2 or •2 → •1. Thus, in this

case every sequence of mutations gives rise to a cluster automorphism. For example, consider µ1:

the quiver nodes get permuted under π = (1 2). We explicitly check – for example using Keller

applet123 – that

(µsource)
5 = µ1µ2µ1µ2µ1 = 1

since (µsource)
5 leaves the d-vectors invariant. From figure 7 one sees that Z5 is indeed the full

automorphism group of the CEG of A2. This result is coherent with the analysis leading to table

18, as well as with the tagged mapping class group of the associated Gaiotto surface, see Example

66.

The explicit expression (17.3) of the S-duality group is the basis of a computer search for S-

dualities. Schematically: let the computer generate a finite sequence of nodes of Q, k1, · · · , ks,
then construct the corresponding mutation µksµks−1 · · ·µk1 = µ, and check whether it leaves the

exchange matrix B invariant up to a permutation π. If the answer is yes, let the machine check

whether µ(d)i 6= dπ(i). If the answer is again yes the computer has discovered a non-trivial S-duality

and prints it. Then the computer generates another sequence and go cyclically through the same

steps again and again. After running the procedure for some time t, we get a print-out with a list

Lt of non-trivial S-dualities of our N = 2 theory. A Mathematica Code performing this routine

is presented in Appendix D.

If the S-duality group is finite (and not too huge) Lt will contain the full list of S-dualities.

However, the most interesting S-duality groups are infinite, and the computer cannot find all its

123See https://webusers.imj-prg.fr/~bernhard.keller/quivermutation/.
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elements in finite time. This is not a fundamental problem for the automatic computation of the

S-duality group. Indeed, the S-duality groups, while often infinite, are expected to be finitely

generated, and in fact finitely presented. If this is the case, we need only that the finite list Lt
produced by the computer contains a complete set of generators of S. Taking various products of

these generators, and checking which products act trivially on the d-vectors, we may find the finitely

many relations. The method works better if we have some physical hint on what the generators

and relations may be.

Of course, the duality group obtained from the computer search is a priori only a subgroup of

the actual S because there is always the possibility of further generators of the group which are

outside our range of search. However, pragmatically, running the procedure for enough time, the

group one gets is the full one at a high confidence level.

17.2 Sample determinations of S-duality groups

We present a sample of the results obtained by running our Mathematica Code.

Example 53 (SU(2) N = 2∗ again). The CEG automorphism group for this model was already

described in §. 16.2.3. Recall that PSL(2,Z) is the quotient of the braid group over three strands,

B3 by its center Z(B3)

PSL(2,Z) ∼= B3

/
Z(B3).

Running our algorithm for a short time returns a list of dualities which in particular contains the

two standard generators of the braid group σ1, σ2 ∈ B3, which correspond to the following sequences

of elementary quiver mutations:

σ1 := µ1µ2, and σ2 := µ1µ3, with permutation π = (1 3 2). (17.4)

One easily checks the braid relation

σ1σ2σ1 = σ2σ1σ2 up to permutation,

as well as that the generator of the center Z(B3), (σ2σ1)3, acts trivially on the cluster category:

indeed, it sends the initial dimension vector ~d = −Id3×3 to itself. From eqn.(17.4) we conclude that

the two S-dualities σ1, σ2 generate a PSL(2,Z) duality (sub)group. In facts, S/PSL(2,Z) ∼= Z2

where the class of the non-trivial Z2 element may be represented (say) by µ1. Indeed the map

S→ Z2 ≡Weyl(Fflav)

send the mutation µ to (−1)`(µ), where the length `(µ) of µ ≡ µksµks−1 · · ·µk1 is s (length is well

defined mod 2).

Example 54 (SU(2) with Nf = 4). We use the quiver in figure 8 where for future reference we

also draw the corresponding ideal triangulation of the sphere with 4 punctures [67]. The following

two even-length sequences of mutations leave the quiver invariant:

S = µ2µ3µ2µ0µ2µ5µ3µ0,

T = µ5µ2µ0µ3µ5µ3µ4µ2µ4µ1µ4µ2µ4µ5µ1µ2.
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Figure 8: The Gaiotto surface (S,M) of the theory SU(2), Nf = 4 and its associated quiver.

These sequences of mutations satisfy the following relations:

S4 = 1, (ST )6 = 1, T has infinite order.

Moreover, T and S commute with S2 and (ST )3. Write Z2 ×Z2 for the subgroup generated by S2

and (ST )3. Then we have

1→ Z2 × Z2 → 〈S, T 〉 → PSL(2,Z)→ 1.

Again this shows that the duality sub-group 〈S, T 〉 generated by S and T is equal to the the

mapping class group of the sphere with four punctures (cfr. Proposition 2.7 of [113]). In fact

one has AutQ(CEG)/〈S, T 〉 ∼= Z2; geometrically (see next section) the extra Z2 arises because for

class S[A1] theories AutQ(CEG) is the tagged mapping class group of the corresponding Gaiotto

surface (Bridgeland theorem [45]); the extra Z2 is just the change in tagging. This extra Z2 is

also detected by the computer program which turns out dualities of order 12 and 8 which are not

contained in 〈S, T 〉 but in its Z2 extension. Taking into account the S4 automorphism of the

quiver, we recover PSL(2,Z)nWeyl(spin(8)) with the proper triality action of the modular group

on the flavor weights [228]. For an alternative discussion of the S-duality group of this model as

the automorphism group of the corresponding cluster category, see ref. [75].

Example 55 (E6 Minahan-Nemeschanski). This SCFT is the T3 theory, that is, the Gaiotto

theory obtained by compactifying the 6d (2, 0) SCFT of type A2 on a sphere with three maximal

punctures [123] . Since the three-punctured sphere is rigid, geometrically we expect a finite S-

duality group. The homological methods of [51] confirm this expectation. The computer search

produced a list of group elements of order 2, 3, 4, 5, 6, 8, 9, 10, 12 and 18. Since, with our definition,

the S-duality group should contain the Weyl group of E6, we may compare this list with the list
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of orders of elements of Weyl(E6), {
2, 3, 4, 5, 6, 8, 9, 10, 12

}
.

We see that the two lists coincide, except for 18. Thus the S-duality group is slightly larger than

the Weyl group, possibly just Weyl(E6)oZ2, where Z2 is the automorphism of the Dynkin diagram.

Notice that this is the largest group which may act on the free part of the cluster Grothendieck

group (since it should act by isometries of the Tits form).

Example 56 (Generic Tg theories). By the same argument as in the previous Example, we expect

the S-duality group to be finite for all Tg (g ∈ ADE) theories. We performed a few sample computer

searches getting agreement with the expectation.

Example 57 (E7 Minahan-Nemeschanski). The computer search for this example produced a list

of group elements of order 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 18 and 30. Since our S-duality group

contains the Weyl group of the flavor E7, we compare this list with the list of orders of elements

of Weyl(E7), {2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 18, 30}. We see that the two lists coincide. It is

reasonable to believe that the full S-duality group coincides with Weyl(E7). This is also the largest

group preserving the flavor Tits form.

17.3 Asymptotic-free examples

As an appetizer, let us consider a N = 2 gauge theory with a gauge group of the form SU(2)k

coupled to (half-)hypermultiplets in some representation of the gauge group so that all Yang-Mills

couplings gi (i = 1, . . . , k) have strictly negative β-functions. As discussed in §. 15.3, the fact that

the theory is asymptotically-free means that its cluster category C is not periodic. However, its

Coulomb branch is parametrized by k operators whose dimension in the UV limit gi → 0 becomes

∆ = 2. As in Example 46, this implies the existence of a 1-periodic sub-category F(1) ⊂ C.
Iff all YM couplings gi are strictly asymptotically-free, the category F(1) consists of k copies of

the 1-periodic sub-category of pure SU(2), Example 46. In such an asymptotic-free theory the

S-duality group is bound to be ‘small’ since all auto-equivalence σ of the cluster category should

preserve the 1-periodic sub-category F(1); therefore, up to (possibly) permutations of the various

SU(2) gauge factors, σ should restrict to a subgroup of autoequivalences of the periodic category

F(1)pure of pure SU(2) SYM. As we saw in Example 51, the S-dualities corresponding to shifts of

the Yang-Mills angle θ preserve124 the subcategory F(1)pure. Thus besides shifts of the various theta

angles, permutations of identical subsectors, and flavor Weyl groups/Dynkin graph automorphism,

we do not expect additional S-dualities in these models. Let us check this expectaction against the

computer search for dualities in a tricky example.

Example 58 (SU(2)3 with 1
2(2,2,2)). A quiver for this model is given in figure 9. In this case

the cluster Grothendieck group K0(Cpris) is pure torsion, since a single half-hyper carries no flavor

charge. The three SU(2) gauge couplings gi are asymptotically-free and the cluster category Cpris

is not periodic but it contains the 1-periodic subcategory F(1) ⊂ Cpris described above125. The

124 Physically this is obvious. Mathematically, consider e.g. the shift shift θ → θ − 4π + Nfπ in SU(2) with Nf
flavors. It corresponds to the auto-equivalence A 7→ A[1], which acts trivially on the 1-periodic subcategory.

125 Notice that there is no periodic sub-category associated to the quark sector; this is related to the absence of
conserved flavor currents in this model.
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Figure 9: A quiver Qpris for the gauge theory with Ggauge = SU(2)3 coupled to a half-hyper in the
three-fundamental. The superpotential for Qpris is Wpris = Tr(H1H2H3) + Tr(h1h2h3).

S-duality group is then expected to consists of permutations of the three SU(2)’s and the three

independent shifts of the Yang-Mills angles θi → θi − 2π, that is, S = S3 n Z3.

The computer algorithm produced the following three commuting generators of the cluster

automorphism group of infinite

θ1 = µ23µ22µ11, θ2 = µ21µ23µ12, θ3 = µ22µ21µ13.

These three generators are identified with the three θ-shifts.

Remark 17.3.1. Since the model is of class S[A1] (with irregular poles), the S-duality group may

also be computed geometrically (see section 7). The computer result is of course consistent with

geometry: each θi translation correspond to a twist around one of the three holes on the sphere:

their order is clearly infinite and the three twists commute with one another.

17.4 Q-systems as groups of S-duality

The above discussion may be generalized to all N = 2 QFTs having a weakly coupled Lagrangian

formulation. If the gauge group G is a product of k simple factors Gi, we expect the S-duality

group to contain a universal subgroup Zk consisting of shifts θi → θi − biπ, with bi the β-function

coefficient of the i-th YM coupling. One may run the algorithm and find the universal subgroup;

however, just because it is universal, its description in terms of quiver mutations also has a universal

form which is easy to describe.

We begin with an example.

Example 59 (Pure SYM: simply-laced gauge group). If the gauge group G is simply-laced, the
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Figure 10: The BPS quiver for pure SYM theory with gauge group SU(N).

exchange matrix of its quiver may be put in the form [4,69,73]126

B =

 0 C

−C 0

 ≡ C ⊗ iσ2, C ≡ the Cartan matrix of G.

For instance, the quiver for SU(N) SYM is represented in figure 10. These quivers are bipartite:

we may color the nodes black and white so that a node is linked only to nodes of the opposite color.

Quiver mutations at nodes of the same color commute, so the product

ν =
∏

i white

µi

is well-defined. Moreover interchanging (black) ↔ (white) yields the opposite quiver Qopp which

is isomorphic to Q via the node permutation π = 1 ⊗ σ1. The effect of the canonical mutation

ν on the quiver is to invert all arrows i.e. it gives back the same quiver up to the involution π.

Thus ν corresponds to an universal duality of pure SYM. One checks that it has infinite order, i.e.

generates a subgroup of S-dualities isomorphic to Z.

This sub-group Z of S-dualities has different physical interpretations/applications in statistical

physics [95, 96, 158] as well as in the context of the Thermodynamical Bethe Ansatz [65] . Indeed,

consider its index 2 subgroup generated by the square of ν

ν2 =
∏

j black

µj
∏

i white

µi.

The repeated application of the S-duality ν2 generates a recursion relation for the cluster variables

which is known as the Q-system of type G. It has deep relation with the theory of quantum groups;

moreover it generates a linear recursion relation of finite length and has many other “magical”

properties [65,95,96].

We claim that the duality ν2 corresponds to a shift of θ. Indeed, the cluster category in this

case is the triangular hull of the orbit category of Db(modCÂ1,1 ⊗ CG) and ν2 corresponds to the

auto-equivalence τ ⊗ Id [51]. Comparing the action of τ ⊗ Id in the covering category with the

Witten effect (along the lines of §.15.3.5) one gets the claim.

Example 60 (SYM with non-simply laced gauge group). The authors of ref. [96] defined Q-systems

also for non-simply laced Lie groups. To a simple Lie group G one associates a quiver and a mutation

ν2 which generates a group Z which has all the required “magic” properties. In ref. [71] it was

126 In particular, cokerB = Z(G)∨ ⊕Z(G) is the correct ’t Hooft group for pure SYM.
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Figure 11: The BPS quiver of SU(N)×SU(M) SQCD with two quarks (? nodes) in the fundamental
representation of SU(N) and one (the ∗ node) in the bifundamental representation. The number
of ◦ (resp. �) is N (resp. M).

shown that the non-simply-laced Q-system does give the quiver description of the BPS sectors of the

corresponding SYM theories. The Q-system group is again the group of S-dualities corresponding

to θ-shifts.

Example 61 (General N = 2 SQCD models). We may consider the general Lagrangian case in

which the gauge group is a product of simple Lie groups,
∏
j Gj and we have hypermultiplets in some

representation of the gauge group. The quivers for such a theory may be found in refs. [4, 71, 72].

For instance figure 11 shows the quiver for SU(M)× SU(N) gauge theory coupled to 2 flavors of

quark in the (N ,1) and a quark bifundamental in the (N̄ ,M). It is easy to check that the two

canonical mutations of the subquivers associated to the two simple factors of the gauge group

ν◦ =
∏
i=◦

µi, ν� =
∏
i=�

µi,

leave the quiver invariant up to the permutation ◦ ↔ • and, respectively, �↔ �. The construction

extends straightforwardly to any number of gauge factors Gj and all matter representations. The

conclusion is that we have a canonical Z subgroup of the S-duality group per simple factor of the

gauge group. It corresponds to shifts of the corresponding θ-angle. If the matter is such that

the β-function vanishes, the full cluster category becomes periodic, and we typically get a larger

S-duality group.

One can convince himself that the sequence of mutations µ does not change the quiver and that

its order, in all the above cases, is infinite, as it is for the shift is the θj ’s.

18 Class S QFTs: Surfaces, triangulations, and categories

In this section we focus on a special class of N = 2 theories: the Gaiotto S[A1] models [123] .

We study them for two reasons: first of all they are interesting for their own sake, and second

for these theories the three categories DbΓ, PerΓ, and C(Γ) have geometric constructions, directly

related to the WKB analysis of [126, 127]. Comparing the categorical description with the results

of refs. [126, 127] we check the correctness of our physical interpretation of the various categories

and functors.

Class S[A1] theories are obtained by the compactification of the 6d (2, 0) SCFT of type A1 over

a complex curve C having regular and irregular punctures [126]. If there is at least one puncture,

these theory have the quiver property [67], and their quivers with superpotentials are constructed

in terms of an ideal triangulation of C [173]. In the geometrical setting of Gaiotto curves, we can
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interpret the categories defined in section 13.5 as categories of (real) curves on the spectral cover

of the Gaiotto curve C.

When only irregular punctures are present, the quiver with potential arising from these theories

[173] has a Jacobian algebra which is gentle [10,74], and hence all triangle categories associated to

its BPS sector, eqn.(4.1), have a simple explicit description.127 When only regular punctures are

present, the N = 2 theory has a Lagrangian formulation (which is weakly coupled in some corner

of its moduli space) and is UV superconformal. In particular the corresponding cluster category is

2-periodic, as the arguments of §. 15.3.3 imply.

18.1 UV and IR descriptions

The main reference for this part is [123] .

In the deep UV a class S[A1] N = 2 theory is described by the Gaiotto curve C, namely a

complex curve of genus g with a number of punctures xi ∈ C. Punctures are of two kinds: regular

punctures (called simply punctures) and irregular ones (called boundaries). The i–th boundary

carries a positive integer ki ≥ 1 (the number of its cilia); sometimes it is convenient to regard

regular punctures as boundaries with ki = 0. Iff ki ≤ 2 for all i, the N = 2 theory is a Lagrangian

model with gauge group128

G = SU(2)m, m = 3g − 3 + p+ 2b where

{
p = #{regular punctures}
b = #{boundaries}.

(18.1)

If b = 0 the theory is superconformal in the UV, and the space of exactly marginal coupling coincides

with the moduli space of genus g curves with p punctures, Mg,p, whose complex dimension is m

≡ the rank of the gauge group G. Instead, if b ≥ 1 (and m ≥ 2), b out of the m SU(2) factors

in the Yang-Mills group G have asymptotically free couplings; these b YM couplings go to zero in

the extreme UV, so that the UV marginal couplings are again equal in number to the complex

deformations Mg,p+b of C.

If some of the boundaries have ki ≥ 3, we have a gauge theory with the same gauge group

SU(2)m coupled to “matter” consisting, besides free quarks (in the fundamental, bi-fundamental,

and three-fundamental of G), in an Argyres-Douglas SCFT of type Dki for each boundary129 [66] .

The space of exactly marginal deformations is as before.

The IR description of the model is given by the Seiberg-Witten curve Σ which, for class S[A1],

is a double cover of C. More precisely, one considers in the total space of the P1-bundle

P(KC ⊕OC)→ C where

{
KC canonical line bundle on C

OC trivial line bundle on C

127 In facts, there is a systematic procedure, called gentling in ref. [74] which allow to reduce the general class S[A1]
model to one having a gente Jacobian algebra.

128 When g = 0, the theory is defined only if b ≥ 1 or b = 0 and p ≥ 3; in case p = 0, b = 1 we require k ≥ 4;
when g = 1 we need p+ b ≥ 1. Except for the case p = 0, b = 1, corresponding to Argyres-Douglas of type A, m in
eqn.(18.1) is ≥ 0. m = 0 only for Argyres-Douglas of type D [66] .

129 Argyres-Douglas of type D1 is the empty theory and the one of type D2 a fundamental quark doublet.
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the curve

Σ ≡
{
y2 = φ2(x) z2

∣∣∣ (y, z) homogeneous coordinates in the fiber
}
→ C,

where φ2(x) is a quadratic differential on C with poles of degree at most ki + 2 at xi. The Seiberg-

Witten differential is the tautological one

λ =
y

z
dx

whose periods in Σ yield the N = 2 central charges of the BPS states.

The dimension of the space of IR deformations is then130 131

s = dimH0(C,PK2
C) ≡ 3g − 3 + 2p+ 2b+

∑
i

ki

where P =
∑
i

(ki + 2)[xi],

so that the total space of parameters, UV+IR, has dimension

n = m+ s = 6g − 6 + 3p+ 3b+
∑
i

ki. (18.2)

There are two kinds of IR deformations, normalizable and unnormalizable ones. The unnormalizable

ones correspond to deformations of the Lagrangian, while the normalizable ones to moduli space

of vacua (that is, Coulomb branch parameters); their dimensions are132

snor ≡ dim (Coulomb branch) = 3g − 3 + p+ b+
∑
i

(
ki −

[
ki
2

])
,

sun-nor = s− snor.

The double cover Σ→ C is branched over the zeros wa ∈ C of the quadratic differential φ2(x).

Their number is

t = 4g − 4 + 2p+ 2b+
∑
i

ki,

but their positions are constrained by the condition that the divisor
∑

a[wa] is linear equivalent

to PK2
C , so that their positions depend on only t − g parameters; φ2(x) depends on one more

parameter

s = t− g + 1

since the positions of its zeros fix φ2(x) only up to an overall scale (that is, up to the overall

normalization of the Seiberg-Witten differential, which is the overall mass scale).

Therefore, up to the overall mass scale, giving the cover Σ→ C is equivalent to specifying the

130 This formula holds under the condition dimMg,p+b = 3g − 3 + p+ b ≥ 0.
131 Here the asymptotically-free gauge couplings are counted as IR deformations.
132 As written, these equations hold even if the condition in footnote 130 is not satisfied. Notice that we count also

the dimensions of the internal Coulomb branches of the matter Argyres-Douglas systems.
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zeros wa ∈ C of the quadratic differential. Indeed, double covers are fixed, up to isomorphism, by

their branching points. We shall refer to the points wa ∈ C as decorated points on the Gaiotto

curve C.

In summary: the UV description of a class S[A1] amounts to giving the datum of the Gaiotto

curve C, that is, a complex structure of a genus g Riemann surface and a number of marked points

xi ∈ C together with a non-negative integer ki at each marked point. To get the IR description we

have to specify, in addition, the decorated points wa ∈ C (whose divisor is constrained to be linear

equivalent to PK2
C). We may equivalently state this result in the form:

Principle. In theories of class S[A1], to go from the IR to the UV description we simply delete

(i.e. forget) the decorated points of C.

We shall see in §.18.7 below that this ‘forget the decoration’ prescription is precisely the map

denoted r in the exact sequence of triangle categories of eqn.(4.1).

18.2 BPS states

In class S[A1] N = 2 theories, the natural BPS objects are described by (real) curves η on the

Seiberg-Witten curve Σ which are calibrated by the Seiberg-Witten differential [228]

λ =
y

z
dx ≡

√
φ2(x) dx,

that is, they are required to satisfy the condition (we set φ ≡ φ2 (dx)2),√
φ
∣∣∣
η

= eiθ dt, here t ∈ R, (18.3)

for some real constant θ, and are maximal with respect to this condition. Being maximal, η

may terminate only at marked or decorated points.133 BPS particles have finite mass, i.e. they

correspond to calibrated arcs η with |Z(η)| < ∞ where the central charge of the would be BPS

state η, is

Z(η) =

∫
η
λ. (18.4)

In this case, the parameter θ in eqn.(18.3) is given by θ = argZ(η). Arcs η associated to BPS

particles may end only at decorations. All other maximal calibrated arcs have infinite mass and

are interpreted as BPS branes [231].

There are two possibilities for BPS particles:

• they are closed arcs connecting zeros of φ. These calibrated arcs are rigid and hence corre-

spond to BPS hypermultiplets;

• they are loops. Such calibrated arcs form P1-families and give rise to BPS vector multiplets.

Conserved charges. From eqn.(18.4) we see that the central charge of an arc η factors through

its homology class η ∈ H1(Σ,Z). More precisely, since the Seiberg-Witten differential λ is odd

133 We call marked/decorated points in Σ the pre-images of marked/decorated points on C.
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under the covering group Z2
∼= Gal(Σ/C), Z factors through the free Abelian group

Λ ≡ H1(Σ,Z)odd, (18.5)

rank Λ = 2
(
g(Σ)− g(C)

)
+ #

{
ki even

}
. (18.6)

Applying the Riemann-Hurwitz formula134 to the cover Σ→ C, we see that the rank of Λ is equal

to the number n of UV+IR deformations, see eqn.(18.2). In turn n is the number of conserved

charges (electric, magnetic, flavor) of the IR theory. Hence the group homomorphism

Z : Λ→ C, [η] 7→
∫
η
λ,

is the map which associates to the IR charge γ ∈ Λ of a state of the N = 2 theory the corresponding

central charge Z(γ). An arc with homology [η] ∈ Λ then has ‘mass’∫
η
|λ| ≥ |Z(η)|

with equality iff and only if it is calibrated, that is, BPS.

To get the corresponding UV statements, we apply to these results our RG principle, that is,

we forget the decorations. BPS particles then disappear (as they should form the UV perspective),

while BPS branes project to arcs on the Gaiotto curve C. Several IR branes project to the same

arc on C. The arcs on C have the interpretation of UV BPS line operators, and the branes which

project to it are the objects they create in the given vacuum (specified by the cover Σ→ C) which

may be dressed (screened) in various ways by BPS states, so that the IR-to-UV correspondence is

many-to-one in the line sector.

The UV conserved charges is the projection of Λ; over Q all electric/magnetic charges are

projected out by the oddness condition, and we remain with just the flavor lattice. However over

Z the story is more interesting and we get [67]

ΛUV
∼= Z#{ki even} ⊕ 2-torsion. (18.7)

Comparing with our discussion in the Introduction, we see that Λ and ΛUV should be identified

with the Grothedieck group of the triangle categories DbΓ and C(Γ), respectively. We shall check

these identifications below.

18.3 Quadratic differentials

We want to study the BPS equations to find the BPS spectrum of the theory. We start by analyzing

the local behavior of the flow of the quadratic differential. The quadratic differential near a zero

can be locally analyzed in a coordinate patch where φ ∼ w; thus we have to solve the following

equation:
√
w
dw

dt
= eiθ,

134 Compare eqns.(6.26)-(6.28) in ref. [67].
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which gives w(t) = (3
2 te

iθ + w
3/2
0 )2/3. We plot here the solution:

-2 -1 0 1 2

-2

-1

0

1

2

The three straight trajectories, which all start at the zero of φ, end at infinity in the poles of φ,

i.e. the marked points on the boundaries of C. Since all zeros of φ are simple by hypothesis, it is

possible to associate a triangulation to a quadratic differential by selecting the flow lines connecting

the marked points as shown in the following figure:

•

•

• •••

•

•

• •••

Flow lines Triangulation
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Moreover, by construction, it is clear that to each triangle we associate a zero of φ. These are

the decorating points ∆ of section 18.7. If we make θ vary, we deform the triangulation up to a

point in which the triangulation jumps: at that value of θ = θc, two zeros of φ are connected by a

curve η: this curve is the stable BPS state. From what we have just stated, it will be clear that

the closed arcs of section 18.7 will correspond to BPS states. Before and after the critical value

of θ = θc, the triangulation undergoes a flip. Flips of the triangulation correspond to mutations

at the level of BPS quiver (see section 18.7 on how to associate a quiver to a triangulation). This

topic is develop in full details in [10,45,214].

Moreover, the second class of BPS objects, i.e. loops representing vector-multiplets BPS states,

appears in one-parameter families and behave as in example 67; the map X of section 18.7 will

allow us to write the corresponding graded module X(a) ∈ Db(Γ).
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θ < θc θ = θc θ > θc

Figure 12: For θ = θc we have an arc corresponding to a BPS hypermultiplet: it is the solution

connecting the two zero of the differential.
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θ < θc θ = θc θ > θc

Figure 13: The 1-parameter family of BPS curves corresponding to a vector multiplet appears for

θ = θc.
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What about the curves connecting punctures or marked points (but not zeros of the quadratic

differential)?135 To answer this question, we have to take a detour into line operators.

Remark 18.3.1. We point out that the space of quadratic differential is isomorphic to the Coulomb

branch of the theory. In a recent paper of Bridgeland [45] it is stated that the space of stability

conditions of DbΓ satisfy the following equation:

Stab0(DbΓ)/Sph(DbΓ) ∼= Quad(S,M).

Thus, the Coulomb branch is isomorphic to the space of stability conditions, up to a spherical

twist. Indeed, a stability condition is a pair (Z,P), where Z is the stability function (i.e. the

central charge) and the category P is the category of stable objects, i.e. stable BPS states (see

section 13.10 for more details).

18.4 Geometric interpretation of defect operators

The main reference for this section is [2] and also [127]. There it is explained how to use M-theory

to construct vertex operators, line operators and surface operators by intersecting an M5 brane

with an M2 one. In particular,

• a vertex operator corresponds to a point in the physical space: it means that the remaining

two dimensions of the M2 brane are wrapped on the Gaiotto surface S, forming a co-dimension

0 object.

• a line operator corresponds to a one-dimensional object in the physical space: the remaining

one dimension of the M2 brane is wrapped around the surface S as a 1-cycle (i.e. non self-

intersecting closed loop) or as an arc connecting two punctures or marked points.

• a surface operator has two spacial dimensions and thus it is represented by a puncture over

the surface C.

These operators are physically and geometrically related. A vertex operator, since it is a sub-

variety of codimension 0 over the complex curve S, can be interpreted as connecting line operators

(i.e the loops at the boundary of the sub-variety representing the vertex operator). Moreover, a

line operator γ can be interpreted as acting on a surface operator x and transporting the point

corresponding to the surface operator around the curve S; the action on its dual Liouville field

( [2]) is the monodromy action along the line associated to the line operator γ. Finally, as explained

in [128], when we describe the curve S via a quadratic differential φ, we can interpret the poles of

φ as surface operators and the arcs connecting marked points and the closed loops correspond to

Verlinde line operators136. If we consider two curves γ1, γ2 that intersect at some point, the line

operators L(γ1, ζ), L(γ2, ζ) corresponding to these curves do not commute (see section 19.1). In

the case of self-intersecting arcs, we get more general Verlinde operators: as line operators, they

135 These are the objects in the perfect derived category PerΓ
136 Traditionally, they are defined by composing a sequence of elementary operations on conformal blocks, each

corresponding to a map between spaces of conformal blocks which may differ in the number or type of insertions.
Roughly speaking, one inserts an identity operator into the original conformal block, splits into two conjugate chiral
operators φa and φ̄a, transports φa along γ and then fuses the operators φa and φ̄a back to the identity channel.

208



can be decomposed into a linear combination of non self-intersecting line operators by splitting the

intersection in all possible pairs.

18.5 Punctures and tagged arcs

The main reference, for this short section, is [126]. In there it is pointed out how the arcs over

the Gaiotto curve C are tagged arcs: at each singularity (extrema of the arc) we have to choose

the eigenvalue of the monodromy operator around that singular point. In particular, in section

8 of [126], we discover that for irregular singularity, the tagging is not necessary, since it is equal

to an overall rotation of the marked points around that boundary component. For punctures, on

the other hand, it is not the case: we have to specify a Z2-tagging. This boils down to a tagged

triangulation, as explained in [126, 214]. Therefore, when considering surfaces with punctures, we

have to consider tagged arcs and not simple arcs. This observation will be important when we

discover that the S-duality group is the tagged mapping class group of the Gaiotto surface C (see

section 16).

18.6 Ideal triangulations surfaces and quivers with potential

Let C be the Gaiotto curve of a class S[A1] model. The invariant of the family of QFTs obtained by

continuous deformations of it is the topological type of C. More precisely, we define the underlying

topological surface S of C by the following steps: i) forget the complex structure, and ii) replace

each irregular punture with a boundary component ∂Si with ki ≥ 1 marked points (ordinary

punctures on C remain punctures on S). S is then the invariant datum which describes the

continuous family of S[A1] theories.

An ideal triangulation of S is a maximal set of pairwise non-isotopic arcs ending in punctures

and marked points which do not intersect (except at the end points) and are not homotopic to a

boundary arc.137 All ideal triangulations have the same number of arcs [117]

n = 6g − 6 + 3p+ 3b+
∑
i

ki.

Note that is the same number as the number of UV+IR deformations, eqn.(18.2), as well as the

number of IR conserved charges rank Λ, eqn.(18.6).

To an ideal triangulation T of the surface of S we associate a quiver with superpotential (Q,W ).

The association S ↔ (Q,W ) is intrinsic in the following sense:

Proposition 18.6.1 (Labardini-Fragoso [173]). Let (Q,W ) be the quiver with potential associated

to an ideal triangulation T of the surface S. A quiver with potential (Q′,W ′) is mutation equivalent

to (Q,W ) if and only if it138 arises from an ideal triangulation T ′ of the same surface S.

In view of Corollary 13.6.1, an important result is:

Proposition 18.6.2 (Labardini-Fragoso [173]). The quiver with superpotential of an ideal trian-

gulation is always Jacobi-finite.

137 A boundary arc is the part of a boundary component between two adjacent marked points.
138 This is slightly imprecise since, in presence of regular punctures W contains free parameters [173]. The statement

in the text refers to the full family of allowed W ’s.
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Thus an ideal triangulation T defines a Jacobi-finite Ginzburg DG algebra Γ ≡ Γ(Q,W ) and

therefore also the three triangle categories DbΓ, PerΓ and C(Γ) described in §§. 2.5, 2.6. Then

Corollary 18.6.1. Up to isomorphism, the three triangle categories DbΓ, PerΓ and C(Γ) are

independent of the chosen triangulation T , and hence are intrinsic properties of the topological

surface S.

It remains to describe the quiver with potential (Q,W ) associated to the ideal triangulation T .

The nodes of Q are in one-to-one correspondence with the arcs γi of T (their number being equal

to the number of IR charges, as required for the BPS quiver of any N = 2 theory). Giving the

quiver, is equivalent to specifying its exchange matrix:

Definition 41. For any triangle D in T = {γi}ni=1 which is not self-folded, we define a matrix

BD = (bD)ij ,1 ≤ i ≤ n, 1 ≤ j ≤ n as follows.

• bDij = 1 and bDji = −1 in each of the following cases:

1. γi and γj are sides of D with γj following γi in the clockwise order;

2. γj is a radius in a self-folded triangle enclosed by a loop γl, and γi and γl are sides of D

with γl following γi in the clockwise order;

3. γi is a radius in a self-folded triangle enclosed by a loop γi, and γl and γj are sides of D

with γj following γl in the clockwise order;

• bDij = 0 otherwise.

Then define the matrix BT := (bij), 1 ≤ i ≤ n, 1 ≤ j ≤ n by bij =
∑

D b
D
ij , where the sum is taken

over all triangles in T that are not self-folded. The matrix BT is a skew-symmetric matrix whose

incidence graph is the quiver Q associated to the triangulation.

The superpotential. The superpotential W is the sum of two parts. The first one is a sum over

all internal triangles of T (that is, triangles having no side on a boundary component). The full

subquiver over the three nodes of Q associated with an internal triangle of T has the form

•
α

��
•

β
// •

γ
__

Such a triangle contributes a term γβα to W . The second part of W is a sum over the regular

punctures. Let γ1, γ2 · · · , γn be the set of arcs ending at the puncture p taken in the clockwise

order. The full subquiver of Q over the nodes corresponding to this set of arcs: it is an oriented

n-cycle. The contribution to W from the puncture p is λp times the associated n-cycle, where

λp 6= 0 is a complex coefficient.
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No regular puncture: gentle algebras. Suppose S has no regular puncture. Since an arc of

T belongs to two triangles (which may be internal or not),

at a node of Q end (start) at most 2 arrows. (18.8)

The superpotential is a sum over the internal triangles
∑

i γiβiαi and the Jacobi relations are of

the form

the arrows α, β arise from the same internal triangle =⇒ αβ = 0. (18.9)

A finite-dimensional algebra whose quiver satisfies (18.8) and whose relations have the form (18.9)

is called a gentle algebra [10], a special case of a string algebra. Thus, in absence of regular

punctures, the Jacobian algebra J(Q,W ) is gentle. Indecomposable modules of a gentle algebra

may be explicitly constructed in terms of string and band modules [10] (for a review in the physics

literature see [73]). A gentle algebra is then automatically tame; in particular, the BPS particles

are either hypermultiplets or vector multiplets, higher spin BPS particles being excluded.

How to reduce the general case of a class S[A1] theory to this gentle situation is explained in

ref. [74].

Example 62. We give here an example of the quiver associated to an ideal triangulation T , whose

incidence matrix is BT :

Figure 14: Left: the sphere with three holes and one marked point per each boundary component.

Right: the quiver associated to the triangulation T drawn on the surface on the right. Its adjacency

matrix is the matrix BT .

18.7 Geometric representation of categories

The main reference is [213]. There is a precise dictionary between curves over a decorated marked

surface and the objects in the category DΓ.
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Then, let ∆ be the set of decorated points: to each triangle of T , choose a point in the interior

of that triangle. With respect to a quadratic differential φ of section 18.3, the decorated points

correspond to the simple zeros of φ. The marked points, on the other hand, correspond to poles of

φ of order mi + 2. Let S∆ be the surface S with the decorated points. The basic correspondence

between geometry and categories is, on the one hand, between objects in D(Γ) and curves over S∆

and on the other hand between morphisms in D(Γ) and intersections between curves. Here follow

the complete dictionary:

1. Recall that an object S ∈ Db(Γ) is spherical iff

HomDbΓ(S, S[j]) ∼= k(δj,0 + δj,3).

A spherical object in the category Db(Γ) corresponds to a simple139 closed140 arc (CA) be-

tween 2 points in ∆. In particular, simple objects are elements of the dual triangulation and

are all spherical. These are some of the BPS hypermultiplets. We can describe these curves as

elements of the relative homology with Z-coefficients H1(S,∆,Z) over the curve S and the set

of points ∆: indeed, the operation of “sum” is well defined and it corresponds to the relation

that defines the Grothendieck group K0(DbΓ). We now describe the map that associates a

graded module (or equivalently a complex) to a closed arc. Consider a closed arc γ that is in

minimal position with respect to the triangulation: every time γ intersects the triangulation,

we add to the complex a simple shifted module Si[j] and we connect it to the complex with

a graded arrow: the grading of the map depends on how the curve and the decorated points

are related. In particular, the grading – corresponding to the Ginzburg algebra grading – is

defined in the following figure141:

We call X both the map X : CA(S∆) → Db(Γ) and X : OA(S∆) → PerΓ, where CA(S∆)

are the arcs of the decorated surface S∆ connecting at most two points in ∆ and OA(S∆) are

the arcs connecting marked points. Notice that for the open arc (OA) case, we also have to

take into account the tagging at the punctures. In particular, the situation is the following:

• For an open curve ending on a puncture inside a monogon: if the curve is not tagged,

139 A simple arc does not have self intersections.
140 A closed arc starts and ends in ∆.
141 The figure is taken from [213].
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then it intersects only the monogon boundary; if the curve is tagged, then the curve

intersect the ray inside the monogon.

• For an open curve ending on a puncture that is not inside a monogon, then the untagged

curve does intersect the curve it would intersect as if it were untagged; if the curve is

tagged, then it is as if the curve made a little loop around the puncture and so changes

the intersection.

Example 63. Let us consider the quiver A2 again. Then, consider the curves γ1, γ2 and γ3

as in the picture.

•

••

• •

•a

•b•c

1 2

γ1

γ3

γ2

By applying the rules above we get:

X(γ1) : S1
a=1→ S2

∼= k
1→ k

X(γ2) : S1[−1]
a∗=1← S2

∼= k[−1]
1← k

X(γ3) : S2
t1=1→ S2[−2] ∼= 0

0→ k ⊕ k[−2]
	
1

This map also works for the graded modules corresponding to closed loops: both those starting

at the zeros of the quadratic differential and those not. As we will see in the example 67 of

the Kronecker quiver, only certain loops are in the category DbΓ. All other possible loops

belong to PerΓ. Moreover, even in the case with punctures, the algorithm to get (graded)

modules form the curves is the same (thanks to proposition 4.4 of [214]).

2. Since every simple object is a spherical objects in DbΓ – in particular, since DbΓ is 3-CY, the

simple objects are 3-spherical – we can define the Thomas-Seidel twist TS associated to such

213



a spherical object S by the following triangle

Hom•DbΓ(X,S)⊗ S → X → TS(X)→ .

These twists are autoequivalences of DΓ. Geometrically, these spherical twists correspond

to braid twists associated to the simple closed arc γS : let BT (S∆) denote the full group

generated by all the braid twists. The action of the braid twist is like in figure

Moreover, being T ∗ the dual triangulation of the triangulation T ,

CA(S∆) = BT (S∆) · T ∗

as shown in [213].

3. In general, braid twists of S∆ correspond to spherical twists of DbΓ: BT (TS∆
) = Sph(Db(Γ)).

Moreover, the quiver representing the braid relations is exactly the quiver Q: to each vertex

we associate a twist TSi and to each single arrow i→ j a braid relation TSiTSjTSi = TSjTSiTSj .

If there is no arrow between i and j, then [TSi , TSj ] = 0.

4. Rigid and reachable objects in PerΓ correspond to the simple open arcs, i.e. simple curves

connecting marked points. The other objects in PerΓ correspond to generic arcs: both

those arcs connecting two different punctures or marked points and closed loops encircling

decorations or boundaries or punctures. We can describe these curves as elements of the

relative homology H1(S∆,M,Z) over the curve S∆ (where the points in ∆ are topological

points in S∆) and the set of marked points M : indeed, the operation of “sum” is well defined

and it corresponds to the relation that defines the Grothendieck group K0(PerΓ).

5. Let T be the triangulation of the surface. The arcs of the triangulations are associated to

the Γei objects in PerΓ and the elements of the dual triangulations are the simple objects in

DbΓ. This is the geometrical version of the simple-projective duality:

dim Homj(Γei, Sk[l]) = δlj δki.

The choice of a heart in DbΓ corresponds to the choice of the simple objects; thus, via the

simple-projective duality it also corresponds to the choice of a triangulation T . The relation

between the Grothendieck groups of DbΓ and PerΓ is via the Euler form (which corresponds

to the intersection form, as pointed out in item 7) and it corresponds to Poincaré duality of

the relative homology groups.
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6. Flips of the triangulation (forward and backward) correspond to right and left mutations µ±i .

Two different flips of the same arc are connected by a braid twist assocaited to that simple

closed arc: TSi = µ+
i (µ−i )−1.

7. Hom spaces correspond to intersection numbers:142 the full proof of the following facts can

be found in [215]:

dim Hom(X(CA), X(CA)) = 2 Int(CA,CA)

dim(X(OA), X(CA)) = Int(OA,CA)

The intersection numbers between arcs in S∆ are defined as follows:

• For an open arc γ and any arc η, their intersection number is the geometric intersection

number in S∆ −M :

Int(γ, η) = min
{
|γ′ ∩ η′ ∩ (S∆ −M)||γ′ ∼= γ, η′ ∼= η

}
.

• For two closed arcs α, β in CA(S∆), their intersection number is an half integer in 1
2Z

and defined as follows:

Int(α, β) =
1

2
Int∆(α, β) + IntS−∆(α, β),

where

IntS∆−∆(α, β) = min
{
|α′ ∩ β′ ∩ S∆ −∆|

∣∣ α ∼= α′, β ∼= β′
}

and

Int∆(α, β) =
∑
Z∈∆

∣∣∣{t ∣∣ α(t) = Z
}∣∣∣ · ∣∣∣{r ∣∣ β(r) = Z

}∣∣∣.
Let T0 be a triangulation and η any arc; it is straightforward to see Int(T0, η) ≥ 2 for a

loop, and the equality holds if and only if η is contained within two triangles of T0 (in

this case, η encircles exactly one decorating point).

Example 64 (Sphere with three holes and one marked point per each boundary component.).

In this particular case (the following results do not hold in general), the matrix corresponding

to the bilinear form Int(−,−) can be obtained by taking the Cartan matrix of the quiver with

potential (Q,W ), i.e. the matrix whose columns are the dimensions of the projective modules,

inverting and transposing it. In particular, the incidence matrix for a sphere with three

boundary components with mi = 1,∀i ∈ {1, 2, 3} – over the basis of simples (corresponding

to the edges of the dual triangulation) – is

142 CA =closed arc, OA =open arc.
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1
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Int =



1
2 −1

2
1
2 0 0 0

1
2

1
2 −1

2 0 0 0

−1
2

1
2

1
2 0 0 0

−1 0 0 1
2

1
2 −1

2

0 −1 0 −1
2

1
2

1
2

0 0 −1 1
2 −1

2
1
2



The Euler characteristic of Db(Γ), as a bilinear form defined in 13.4, on the other hand, is an

antisymmetric integral matrix that is the antisymmetric part of Int(−,−):

χ(−,−) =



0 1 −1 −1 0 0

−1 0 1 0 −1 0

1 −1 0 0 0 −1

1 0 0 0 −1 1

0 1 0 1 0 −1

0 0 1 −1 1 0


.

Notice that the skew-symmetric matrix we have just found corresponds to the matrix BT

associated to the ideal triangulation of figure 14.

8. Relations amongst the exchange graphs (EG) of the surface S (to each vertex of this graph

we associate a triangulation and to each edge of the graph a flip of the triangulation) and the

cluster exchange graph (CEG) of the cluster algebra (to each vertex of the graph we associate

a cluster and to each edge a mutation):

EG(S) = CEG(Γ)

EG(Db(Γ))/Sph(Db(Γ)) = CEG(Γ)

9. A distinguished triangle in Db(Γ) corresponds to a contractible triangle in S∆ whose edges are

3 closed arcs (α, β, η) as in the figure, such that the categorical triangle is X(α) → X(η) →
X(β)→.
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Exploiting the group structure of the homology group H1(S,∆,Z), we see that we have the

following relation:

[α]− [η] + [β] = 0;

this is the defining relation of the Grothendieck group K0(DbΓ).

10. The triangulated structure of PerΓ is less easy to represent geometrically. Before proceeding

with an example, we define the left and right mutations in PerΓ starting from the silting set.

Definition 42. A silting set P in a category D is an Ext>0-configuration, i.e. a maximal

collection of non-isomorphic indecomposables such that Exti(P, T ) = 0 for any P, T ∈ P and

integer i > 0. The forward mutation µ−P at an element P ∈ P is another silting set P−P ,

obtained from P by replacing P with

P− = Cone

P → ⊕
T∈P{P}

DHomirr(P, T )⊗ T

 , (18.10)

where Homirr(X,Y ) is the space of irreducible maps X → Y , in the additive subcategory

add
⊕

T∈P T of D. The backward mutation µ+
P at an element P ∈ P is another silting set P+

P ,

obtained from P by replacing P with

P+ = Cone

 ⊕
T∈P{P}

Homirr(T, P )⊗ T → P

[−1] (18.11)

Remark 18.7.1. Notice that equations (13.6) and (13.7) are exactly the same as (18.10) and

(18.11): the notation of the latter is more straightforward for the next computations.

We give now an example to show how one can get the triangulated structure of perΓ and we

relate it to the group structure of H1(S∆,M,Z).

Example 65 (A2 example). The silting set for the quiver A2 : •1 → •2 is P = {Γe1,Γe2}
which we denote as {Γ1,Γ2}. We apply the left mutation corresponding to a forward flip: it

gives the following triangle

Γ2 → Γ1 → Γ−2 → .

The element Γ−2 is an infinite complex of the form S1
t1→ Γ1[−2]. At a geometrical level it

corresponds to the red curve in this figure:
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•

••

• •

•a

•b•c

Γ1 Γ2

Γ−2

As one can see, these three open arcs do not seem to be geometrically easily related. The

next step, which is fundamental for consistency of the geometric representation, is to consider

the following triangle:

Γ1[−2]→ Γ−2 → S1 →

This triangle is exact and moreover S1 ∈ DbΓ. This implies that in the cluster category, both

Γ−2 and Γ1[−2] map to the same curve. We can exploit the geometric effect of the shift (see

item 12) to compute Γ1[−2]: it is the green curve in the next figure
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Figure 15: The geometric representation of the distinguished triangle Γ1[−2]→ Γ−2 → S1 → in the

perfect category PerΓ.

When we map to the cluster category via the forgetful functor (see item 11), we have that

both Γ1[−2] and Γ−2 are sent to the same object: S2. Indeed, the corresponding cluster

category is made of 5 indecomposables which form the following periodic AR diagram

Γ1

  

P1

  

Γ2

>>

S2

>>

S1

where we can read the corresponding triangles in the cluster category. The geometric picture

is
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•

••

• •

Γ1 Γ2

S1

P1

S2

We can now generalize the above results by stating that the triangulated structure is consistent

with the group structure of the relative homology group H1(S∆,M,Z) paired with the relative

homology of H1(S,∆,Z): indeed, we see that in H1(S∆,M,Z) – after choosing opposite

direction for the red and green path of figure 15– we have

[Γ1[−2]]− [Γ−2 ] + [S1] = 0.

The relations defining the Grothendieck K0(PerΓ), such as

[Γ2]− [Γ1] + [Γ−2 ] = 0,

are less obvious from a homological viewpoint: there is no other way but compute them

explicitly when needed.

11. The Amiot quotient PerΓ/Db(Γ) [6] – through which the cluster category is defined – corre-

sponds to the forgetful map F : S∆ → S. For a short reminder of triangulated quotients, see

section 13.5. In particular, we recover easily the results of [47]: the indecomposable objects

of the cluster categories are string modules or band modules. Geometrically a string is an

open arc and the procedure to associated a module to it is the same as the one described in

item 1 for closed arcs. So indeed, since open curves are indecomposable objects of PerΓ, as

pointed out in item 4, the following diagram – at least for string modules – commutes:

OA(S∆)
F //

X
��

OA(S)

X
��

PerΓ
π // C(Γ)

We expect no difference in the case of band modules (which correspond to families of loops).

12. In the cluster category C(Γ) and in the perfect derived category PerΓ, the shift [1] corresponds
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to a global anticlockwise rotation of all the marked points on each boundary component. For

punctures, the action of [1] corresponds to a change in the tagging. In C(Γ), it is equivalent to

the operation τ (the AR translation), as defined in [47]. In particular we see that in presence

of only regular punctures, [2] flips twice the tagging getting back to the original situation,

that is, in this case the cluster category is 2-periodic, as expected on physical grounds.

Let us consider here a simple example that will allow us to clarify some aspects.

Example 66 (A2 again). Let us consider the following curves over a disk with 5 marked points

on the boundary and no punctures. The triangulation is made of the black lines 1 and 2 and the

boundary arcs:

•

••

• •

•a •b

•c

1 2
a

c′

b

c

d

Figure 16: This is the surface corresponding to the quiver A2 : 1→ 2.

The curves a and d correspond to graded modules in DbΓ as shown in the example 63; indeed,

the curve d corresponds to the graded module S1 ← S2[−1] in DbΓ. The red curves b and c′, on

the other hand, cannot be associated to any closed curve, since they cannot intersect any closed

curve in minimal position: they are elements only of PerΓ and not of DbΓ. When we take the

Amiot quotient, the green dots disappear and so do the curves a and d. Moreover, the curve c is

homotopic to a boundary arc and b is homotopic to 2. Thus the quotient does what we expect:

only the curves in PerΓ that are not in DbΓ do not vanish. The intersection form in this example

is

Int =

 1 −1

0 1


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and thus the Euler characteristic is

χ =

 0 1

−1 0


We can thus construct the Thomas-Seidel twists associated to the simple modules:

TS1 = Id− |S1〉 〈S1| · χ =

 1 −1

0 1



TS2 = Id− |S2〉 〈S2| · χ =

 1 0

1 1


And we can explicitly check the braid relation

TS1 · TS2 · TS1 = TS2 · TS1 · TS2

both on K0(DbΓ) and geometrically. Moreover it is clear from the matrix representation that TS1

and TS2 generate SL2(Z). We can also act with these twists on the graded modules:

TS1 ·X(S2) = X((−1, 1))

The graded module whose dimension vector is (−1, 1) is k[−1]
a∗=1← k. This is consistent with the

geometric picture, as one can verify:

•

••

• •

•a

•b•c

S1

S2

TS1
S2
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Example 67 (Kronecker quiver). The surface corresponding to the Kronecker quiver is an annulus

with one marked point on each boundary component. This theory corresponds to a pure SU(2)

SYM. Thus, we shall find closed curves corresponding to BPS vector bosons. They must also appear

a one-parameter family. In the following figure, the green loops around the two points represent a

band module, the black dots the marked points; the black lines are the flow lines associated to the

quadratic differential φ described in section 18.3.

•

•

•

•

Figure 17: The 1-parameter family of curves corresponding to the vector multiplet of charge (1, 1).

The module corresponding to (one of) the green curve can be computed via the map X : a 7→
X(a) ∈ DbΓ, starting at a generic point along the curve. We get

X(a) : S1
a=1,b=λ

=⇒ S2
∼= k

a=1,b=λ
=⇒ k.

This module is stable (see section 13.10) since it is equivalent to the regular module in the homo-

geneous tube of mod-kKr.

18.8 Summary

We give here a sketchy summary of what we have written so far; recall that, given a quadratic

differential φ(z)dz ⊗ dz there are three kind of markings: the zeros of φ (decorations), the simple

poles of
√
φ (punctures) and the irregular singularities of φ, which generate the marked points on

the boundary segments.

• BPS vector multiplets correspond to loops, not crossing the separating arcs of the flow of φ,

for θ = argZ(BPS) = θc. They belong to the category DbΓ via the maps X.

• BPS hypermultiplets correspond to arcs connecting two zeros of φ. They belong to the

category DbΓ via the map X and can be identified with elements in the relative homology

H1(S,∆,Z), where ∆ are the zeros of φ.

• Surface operators corresponds to punctures and marked points.
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• The objects in the perfect derived category PerΓ are the screening states created by line

operators acting on the vacuum. They correspond to arcs connecting marked points and

punctures and thus belong to H1(S∆,M,Z).

• UV line operators correspond to arcs over S connecting marked points and punctures (but

not zeros of φ). They belong to the cluster category C(Γ) and can also be identified with

elements of the relative homology H1(S,M,Z), where M is the set of markings of the surface

S.

With this dictionary in mind, we can now exploit the categorical language to compute physical

quantities (such as vacuum expectation values of UV line operators).

Remark 18.8.1. A generalization of these concepts, in particular towards ideal webs and dimer

models can be found in [133]. There it is argued that the 3-CY category DbΓ is the physical

BPS states category, in accordance with our analysis. Moreover, in the case in which we have a

geometrical interpretation via bipartite graphs, the mapping class group of the punctured surface,

is a subgroup of the full S-duality group. Here we give a simple example.

Example 68 (Pure SU(3)). The pure SU(3) theory can be described as a S[A2] Gaiotto theory

over a cylinder with one full punctures per each boundary [248]. The mapping class group is

generated by a single Dehn twist around the cylinder. It acts on the bipartite graph associated

to the SU(3) theory and it must be a subgroup of the full S-duality group. It is isomorphic to Z.

Since we also have that pure SU(3) theory can be described by the quiver

Kr �A2,

We explicitly find – using he techniques of [51] – that a cluster automorphism is given by τKr⊗ τA2 ,

which generates a free group, thus isomorphic to Z.

19 Cluster characters and line operators

19.1 Quick review of line operators

The main reference for this part is [84]. We are going to study, in the following section, the algebra

of line operators: we shall discover that this algebra is closely related to the cluster algebra of

Fomin and Zelevinski [118]. Recall that an IR line operator (also called framed BPS state [127]) is

characterize by a central charge ζ and a charge γ. Similarly for a UV line operator. The starting

point is to consider the RG flow:

RG(·, α, ζ) : {UV line operators} → {IR line operators}

L(α, ζ) 7→
∑
γ∈Γ

Ω̄(α, ζ, γ, u, y)L(γ, ζ),

where L(α, ζ) is a supersymmetric UV line operator of UV charge α (see §14.2.3). We can think of

it as a supersymmetric Wilson line operator:

L(α, ζ) := exp

(
iα

∫
time

A+
1

2
(ζ−1φ+ ζφ̄)

)
.
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where A is the gauge connection and φ and φ̄ are the supersymmetric partners. The idea is that

cluster characters provide the coefficients Ω̄(α, ζ, γ, u, y); moreover, the OPE’s of line operators

can be identified with the cluster exchange relations. The physical definition of Ω̄(α, ζ, γ, u, y) as

supersymmetric index is the following. Define the Hilbert space of our system with a line operator

in it polarizing the vacuum: HL,ζ,u =
⊕

γ∈Γu
HL,ζ,u,γ , where Γu is the charge lattice and u a point

in the Coulomb branch. When we restrict only to BPS states we have HBPS
L,ζ,u. We now define the

following index (i.e. a number that counts the line operators):

Ω̄(α, ζ, γ, u, y) = TrHL,ζ,u,γ (y2J3(−y)2I3),

where the I and J operators are the Cartan generators associated to the unbroken Lorentz symmetry

SO(3) and unbroken R-symmetry SU(2)R by the presence of the line operator which moves along

a straight line in the time direction. In particular, if y = 1:

Ω̄(α, ζ, γ, u, 1) = TrHL,ζ,u,γ (12J3(−1)2I3) =
∑
m

12m(−1)0 = dimHBPS
L,ζ,u,γ .

This index corresponds to the Poincaré polynomial of the quiver Grassmannian Grγ(α), where we

interpret the UV line operator L of charge α as the quiver representation of which we compute the

cluster character (see §19.2.1 for more details).

19.1.1 Algebra of UV line operators

Let the OPE’s of UV line operators be defined as follows

L(α, ζ)L(α′, ζ) =
∑
β

c(α, α′, β)L(β, ζ).

From now on, let us fix the generic point of the Coulomb branch u. We also define the generating

functions for the indexes Ω̄(L, γ) = Ω̄(L, γ, u = fixed, y = 1):

F (L) =
∑
γ

Ω̄(L, γ)Xγ ,

where the formal variable Xγ is such that XγXγ′ = Xγ+γ′ . One can check that F (LL′) =

F (L)F (L′). This equality gives a recursive formula to compute F (LL′). Furthermore, we can

study the wall-crossing of UV line operators via the formula of KS [127]:

F+(Lγc) = F−(Lγc)
∏
γ

Mγ∏
m=−Mγ

(1 + (−1)mXγ)|〈γ,γc〉|am,γ

where γc is the charge of the wall we are crossing, and Mγ is the maximal value of the operator

J3 = J2 + I3 and the am,γ are the coefficients of the index:

Ω̄(α, ζ, γ, u, y) =

Mγ∑
m=−Mγ

am,γy
m.
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We can transfer this formula on the newly defined variables to implement the wall-crossing more

efficiently:

X ′γ = Xγ

∏
γ

Mγ∏
m=−Mγ

(1 + (−1)mXγ)〈γ,γc〉am,γ . (19.1)

Moreover, the transformation of the indices Ω̄(L, γ) is an automorphism of the OPE algebra. Thus,

the algebra obeyed by the generating functionals is in fact an invariant of the UV sector theory.

The properties of the KS wall-crossing formula of 19.1 and the fact that these generating functionals

are invariants of the UV theory (i.e. of the cluster category C(Γ)), tell us that F (L) are exactly

the cluster character. The non-commutative generalization is done via the star product [84]:

L(α, ζ) ∗y L(α′, ζ) =
∑
β

c(α, α′, β, y)L(β, ζ)

and Xγ ∗yXγ′ = y〈γ,γ
′〉DXγ+γ′ . We define again the generating functions F (L) =

∑
γ Ω̄(L, γ, y)Xγ ,

and then verify that

F (L ∗y L′) = F (L) ∗y F (L′).

Indeed we discover that the non-commutative version of F behaves exactly like a quantum cluster

character (usual cluster characters are obtained by setting y = 1). We can thus analyze these

objects from a purely algebraic point of view and study cluster algebras and cluster characters: we

shall do this is the next section.

19.2 Cluster characters

The main references for this section are [102,207]. We begin by recalling some basic definitions and

properties of cluster characters. Let C := C(Γ) be a cluster category.

Definition 43. A cluster character on C with values in a commutative ring A is a map

X : obj(C)→ A

such that

• for all isomorphic objects L and M , we have X(L) = X(M),

• for all objects L and M of C, we have X(L⊕M) = X(L)X(M),

• for all objects L and M of C such that dim Ext1
C(L,M) = 1, we have

X(L)X(M) = X(B) +X(B′),

where B and B′ are the middle terms of the non-split triangles

L→ B →M → and M → B′ → L→

with end terms L and M.143

143 If B′ does not exist, then X(B′) = 1.
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Let T =
⊕

i Ti be a cluster tilting object, and let B = EntCT . The functor

FT : C → mod-B, X 7→ Hom(T,X)

is the projection functor that induces an equivalence between C/addT [1] → mod-B. Then the

Caldero-Chapoton map [102],

XT
? : ind C → Q(x1, ..., xn)

is given by

XT
M =

 xi if M ∼= ΣTi∑
e χ(GreFTM)

∏n
i=1 x

〈Si,e〉D−〈Si,FM〉
i else,

where the summation is over the isoclasses of submodules144 of M and Si are the simple B-modules.

Moreover, the Euler form and Dirac form in the formula above, are those of mod-B. We now recall

some properties of quiver Grassmannians145 and in particular their Euler Poincaré characteristic χ

(with respect to the étale cohomology).

Definition 44. Let Λ be a finite dimensional basic C-algebra. For a Λ-module M we define

the F -polynomial to be the generating function for the Euler characteristic of all possible quiver

grassmanians, i.e.

FM :=
∑
e

χ(Gre(M))ye ∈ Z[y1, ..., yn]

where the sum runs over all possible dimension vectors of submodules of M .

Moreover, we assume that S1, ..., Sn is a complete system of representatives of the simple Λ-

modules, and we identify the classes [Si] ∈ K0(Λ) with the natural basis of Zn.

Proposition 19.2.1. Let Λ be a finite dimensional basic C-algebra. Then the following holds:

1. If

0→ L
i→M

π→ N → 0

is an Auslander-Reiten sequence in Λ-mod, then

FLFN = FM + ydimN .

2. For the indecomposable projective Λ-module Pi with top Si we have

FPi = FradPi + ydimPi

for i = 1, ..., n.

3. For the indecomposable injective Λ-module Ij module with socle Sj we have

FIj = yjFIj/Sj + 1

144 Recall that a module N is a submodule of M iff there exists an injective map N →M .
145 Gre(FM) := {N ⊂ FM | dimN = e}, i.e. it is the space of subrepresentations of M with fixed dimension e.
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for j = 1, 2, ..., n.

The recursive relations of cluster characters and F -polynomials are the key tools to find a

computational recipe: the next section is devoted to pointing out this algorithm. All aspects will

be clarified in Example 69.

19.2.1 Computing cluster characters

The best way to compute cluster characters, is to exploit the results in [12]. The idea is to associate

a Laurent polynomial to a path in the quiver. If the algebra is gentle, to a path we can associate

a string module: computing the cluster character associated to string modules (up to an overall

monomial factor) becomes a simple combinatorics problem. For any locally finite quiver Q, we

define a family of matrices with coefficients in Z[xQ] = Z[xi|i ∈ Q0] as follows. For any arrow

β ∈ Q1, we set

A(β) :=

 xt(β) 0

1 xs(β)

 and A(β−1) :=

 xt(β) 1

0 xs(β)

 .
Let c = c1...cn be a walk of length n ≥ 1 in Q. For any i ∈ {0, ..., n} we set

vi+1 = t(ci)

(still with the notation c0 = es(c)) and

Vc(i) :=

 ∏α∈Q1(vi,−),α 6=c±1
i ,c±1

i−1
xt(α) 0

0
∏
α∈Q1(−,vi),α 6=c±1

i ,c±1
i−1

xs(α)

 .
We then set

Lc =
1

xv1 ...xvn+1

[1, 1]Vc(1)

n∏
i=1

A(ci)Vc(i+ 1)

 1

1

 ∈ L(xQ).

If c = ei is a walk of length 0 at a point i, we similarly set

Vei(1) :=

 ∏α∈Q1(vi,−) xt(α) 0

0
∏
α∈Q1(−,vi) xs(α)

 .
and

Lei =
1

xi
[1, 1]Vei

 1

1

 ∈ L(xQ).
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In other words, if c is any walk, either of length zero, or of the form c = c1...cn, we have

Lc =
1∏n

i=0 xt(ci)
[1, 1]

n∏
i=0

A(ci)Vc(i+ 1)

 1

1

 ∈ L(xQ).

with the convention that A(c0) is the identity matrix. In general, we have the following result:

XM =
1

xnM
Lc,

where M is the string module associated to the path c and the monomial xnM is the normalization

coefficient.

Example 69. Let us consider the cluster category of A4: its AR quiver is the following

We have also made the choice of tilting objects. The algebra EndT is given by the following

quiver:146

with relations βα = γβ = αγ = 0. The Dirac form is the following:

〈−,−〉D =



0 1 0 0

−1 0 −1 1

0 1 0 −1

0 −1 1 0


,

whereas the Euler form is 〈a, b〉 := dim HomC(a, b) − dim HomC(a, b[1]). Consider the B-module

FTM = (1, 1, 0, 0). Its submodules are 0, S1 and FTM itself. The corresponding path is just the

146 The vertices are the Ti and the arrows j → i correspond to HomC(Ti, Tj).
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arrow c : 2→ 1. By applying the formulas above we get:

Lc =
1

x1x2
[1, 1]A(c0) · Vc(1) ·A(c) · Vc(2)

 1

1

 (19.2)

=
1

x1x2
[1, 1]Id

 x3 0

0 x4


 x1 1

0 x2


 1 0

0 1


 1

1

 (19.3)

=
x1x3 + x4 + x2x4

x1x2
. (19.4)

Notice that the denominator is exactly xdimFM : this is a general feature for the decategorifi-

cation process [108]. Moreover, we know that the Euler characteristic of a point is 1 and thus

χ(Gr0FTM) = 1 = χ(GrFTMFTM). We then exploit the AR sequence

0→ S1 → FTM → S2 → 0

and get the recursive relation

FS1FS2 = FFTM + y2,

which is equivalent to the following polynomial equation:

1 + y1χS1 + y2χS2 + y1y2χS1χS2 = 1 + χS1y1 + χFMy1y2 + y2,

which implies that χS1 = χS2 = 1 and this is consistent with the previous result. One can check

this and many other computations using appendix C.

Remark 19.2.1. One final remark is needed: we could have computed the cluster characters by

a sequence of mutations of the standard seed of the cluster algebra associated to the quiver of

B = EndT . For the non-commutative case, i.e. when

xαxβ = q
1
2
〈α,β〉D xα+β,

this procedure is the only one we know to compute quantum cluster characters. From the physics

point of view, this is the important quantity: since cluster variables behave like UV line operators,

they must satisfy the same non-commutative algebra.

19.3 Cluster characters and vev’s of UV line operators

Let us start by recalling how the vacuum expectation values of line operators are computed in [127].

The idea is associate to a loop over a punctured Gaiotto surface a product of matrices. In the case

of irregular singularities, since these singularities can be understood as coming from a collision of

punctures, loops can get pinched and become laminations. Thus to both string modules (associated

to laminations) and band modules (associated to loops), we can associate a rational function in

some shear variables Yi. Their expression turns out to be equal to cluster characters: for string

modules we can use section 19.2.1, whereas for band modules we can use the bangle basis of [198]
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and the multiplication formula or the Galois covering technique of [74]. We shall now give some

detailed examples in which we apply what we just described.

Example 70 (A2 quiver). The computations of [127] of the vev’s of the UV line operators can

be found in section 10.1. They have been made using the “traffic rule”. The idea is to follow the

lamination path and create a sequence of matrices according to the traffic rule. In the end, one

takes the trace of the product of matrices (loop case) or contract the product of matrices with

special vectors (open arcs case). For example,

•

••

• ••

•

•

• ••

•
•

Y1
Y2

Figure 18: The L1 lamination of the A2 theory.

The matrix product is the following:

〈L1〉 = (BR ·R ·MY2 · L · ER)(BR ·R ·MY2 · L · ER),

where the matrices are

L =

 1 1

0 1

 , R =

 1 0

1 1

 , MX =

 √X 0

0 1/
√
X

 ,

and the vectors are

BR = (1 0), BL = (0 1), EL = (1 0)t, ER = (0 1).

Then we get:

R.MY2 .L =

 √Y2

√
Y2

√
Y2

√
Y2 + 1√

Y2

 ,
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and finally

〈L1〉 =
√
Y2

√
Y2 = Y2.

The other four line operators, corresponding to the four remaining indecomposable objects of the

cluster category of C(ΓA2) (or equivalently the remaining four cluster variables) are:

〈L2〉 = Y1 + Y2Y1, 〈L3〉 =
1

Y2
+
Y1

Y2
+ Y1, 〈L4〉 =

1

Y2
+

1

Y2Y1
, 〈L5〉 =

1

Y1
.

On the other hand, the cluster characters of A2 are:

x1, x2,
1

x2
+
x1

x2
,

1

x1
+
x2

x1
,

1

x1x2
+

1

x1
+

1

x2
.

The following map (Y1, Y2) 7→ ( 1
x2
, x1) transforms one set to the other. This map is the tropical-

ization map of Fock and Goncharov [116]:

Yi =
∏
j

x
Bij
j .

Notice that this result was expected from the general algebraic properties of the line operators

algebra and the cluster algebras.

We now proceed to a more interesting example: the pure SU(2) theory. The computations of

section 19.2.1 has to be modified a bit: as we will see, it is convenient to exploit the Galois covering

techniques of [74].

Example 71 (Kronecker quiver). Let us focus our attention to the non rigid modules, i.e. those

belonging to the homogeneous tubes of the AR quiver of the cluster category C(ΓKr). There is a

P1 family of these modules and, amongst them, two of them are string modules (those of the form

1
λ=0⇒

1
2). By the theorems of [108], the cluster characters do not depend of the value of the parameter

λ and we are thus free to choose the simplest one to compute the character. Geometrically, this

family of modules corresponds to loops around the cylinder (see figure 17). With the traffic rule

techniques – with the slight modification of taking the trace instead of using the B and E vectors

– we compute the vev of the line operator whose e.m. charge is (1, 1):

〈
L(1,1)

〉
=
√
Y1Y2 +

√
Y1

Y2
+

1√
Y1Y2

. (19.5)

We can reproduce this result using cluster characters. The only observation is that we cannot

simply use section 19.2.1 to compute the character associated to the module dimM = (1, 1): we

have a path ambiguity. We thus have to construct a Z2 Galois cover [74], compute the character

on the cover, and then project it down to the Kr quiver. The reason is that the Kronecker quiver

has a double arrow and we have to be able to specify the path we follow uniquely. On the Z2 cover
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the ambiguity is lifted and the character can be computed. The Z2 cover is:

•3 •2′

•1
c

??

��

•2

__

��

π→

•4 •1′

KS

where the covering map π sends 1, 2 7→ 1′ and 3, 4 7→ 2′. The character corresponding to the string

c with respect to the covering quiver is

1 + x1x2 + x3x4

x1x3

Therefore, if we identify the cluster variables following the covering map π, we get

1 + x′21 + x′22
x′1x

′
2

. (19.6)

This result is consistent with what we find in literature (e.g. [108]). Also in this case, we find that

the tropicalization map 147 sends the rational function 19.5 to 19.6:

(Y1, Y2) 7→ (x−2
2 , x2

1).

In this final example we show how to compute the cluster character associated to a band module

in a more complicated quiver.

Example 72 (SU(2) with Nf = 4). We are interested in the module M corresponding to the

purple loop in the following figure

147 Id est Yi =
∏
j x

Bij

j .
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Using the traffic rule, it is rather straightforward to compute the VEV of the line operator

associated to the module M . The result – which is similar to the ones computed in [127] – is:

〈LM 〉 = Tr(L ·MY1 ·R ·MY2 ·R.MY4 ·L ·MY5) =
1 + Y4 + Y2Y4 + Y4Y5 + Y2Y4Y5 + Y1Y2Y4Y5√

Y1Y2Y4Y5
(19.7)

The cluster character computation is more involved than the simple application of section 19.2.1:

we exploit the techniques of [116]. The idea is similar to the traffic rule: we find a path over the

hexagonal graph of [116] that is homotopic to the path considered. Then, to each edge of the

hexagonal graph we associate a matrix with the following rule:
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The matrices D and F are:

D(x) =

 0 x

− 1
x 0

 , F

(
xα
xβxγ

)
=

 1 0

xα
xβxγ

1

 .

In our example we find:

Tr

(
D(x1)F (

x3

x1x2
)F (

x3

x4x2
)D(x4)F−1(

x6

x4x5
)F−1(

x6

x1x5
)

)

=
x2x5x1

2 + x2x5x4
2 + x3x6x

2
1 + x3x6x4

2 + 2x1x4x3x6

x1x2x4x5
. (19.8)

Again we can check that the result (19.7) is the tropicalization of (19.8).
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A 4d/2d correspondence and 4d chiral operators

The 4d/2d correspondence [60] states that — for a certain class of 4d N = 2 models — the exchange

matrices Bij of their quivers arise as the BPS counting matrices of 2d (1, 1) models with ĉ < 2.

More precisely, for a N = 2 QFT in this class there is a 2d (1, 1) theory with n supersymmetric

vacua and 0 ≤ ĉ < 2 such that

B = St − S (A.1)

where S is the unipotent integral tt∗ Stokes matrix of the 2d model [63]. In a suitable basis the

matrix S is upper triangular with 1’s along the diagonal, and the off–diagonal (generically) integral

entries count the 2d BPS states as in [63]. Quiver mutations correspond to 2d wall–crossing. The

matrix H = (St)−1S is the 2d quantum monodromy with eigenvalues{
exp
(
2πi(qa − ĉ/2)

)
: qa ≡ UV U(1)R charges of 2d chiral primaries

}
. (A.2)

In particular, only Stokes matrices such that the eigenvalues ofH are roots of unity may correspond

to unitary 2d QFT.

It follows from 2d PCT that the set {qa} is symmetric under

qa ←→ ĉ− qa. (A.3)

The 2d theory has always an operator with qa = 0, namely the identity, so exp(±2πiĉ/2) are

always eigenvalues of H. A priori this fixes ĉ/2 only mod 1, but since 0 ≤ ĉ/2 < 1, the value of ĉ

is uniquely fixed once we know which eigenvalue of H is to be identified with exp(2πiĉ/2). Only

eigenvalues consistent with the symmetry (A.3) may be identified with ĉ. ĉ is also determined as

the fractional CY dimension of the corresponding derived brane category.

4d flavor charges correspond to zero–eigenvectors of B, (S − St)ψ = 0. Now

Sψ = Stψ ⇐⇒ Hψ ≡ (St)−1Sψ = ψ, (A.4)

so flavor charges correspond to eigenvectors of the 2d quantum monodromy associated to the

eigenvalue +1, that is, comparing with eqn.(A.2), to 2d chiral primaries of dimension ĉ/2 mod 1.

Since 2d unitarity imples qa ≤ ĉ < ĉ/2+1, the dimension of the 2d ‘flavor’ operators Of is precisely

ĉ/2. The dual parameters mf in the 2d action

S0 +
∑
f

(∫
d2z d2θ mf Of + H.c.

)
(A.5)

have a 2d U(1)R charge 1 − ĉ/2. From the 4d viewpoint the mf ’s, being dual to conserved flavor

charges, have the dimension of masses; so

4d dimension =
2d U(1)R charge

1− ĉ/2
. (A.6)

In particular, the dimensions of the operators parametrizing the Coulomb branch are given by the
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k numbers {
∆1,∆2, · · · ,∆k

}
≡
{

1− qa
1− ĉ/2

such that qa < ĉ/2

}
(A.7)

which are determined byH and the identification of which eigenvalue is identified with exp(2πiĉ/2),

up to a few mod 1 ambiguities. Note that for an interacting theory ∆` > 1, as required by 4d

unitarity. Since the minimal qa is always zero, the largest dimension of a Coulomb branch operator

is given by

∆k =
1

1− ĉ/2
. (A.8)

B Deferred proofs

B.1 Properties of the dual fractional ideal

Lemma B.1.1. Let n = pr11 p
r2
2 · · · prss be the decomposition of n in prime factors. We write ζi for

a primitive prii -root of unity. Then

u ≡ Φ′n(ζ)∏s
i=1 Φ′

p
ri
i

(ζi)
is a unit in O. (B.1)

The proof will be given in §.B.2 below.

Lemma B.1.2 ([186]). Let 3 ≤ n 6= pr, 2pr with p an odd prime. Then in O there is a purely

imaginary unit.

Proof. If n = 0 mod 4, i ∈ O. If n 6= 0 mod 4, we replace n by the conductor n̆ which is an odd

integer divisible by two distinct primes. Let ζ be a primitive n̆-th root of unity. (ζ−ζ−1) = ζ(1−ζ−2)

is an imaginary unit.

Remark B.1.1. It is easy to check that if n̆ = pr with p an odd prime and the class number of K
is 1, there are no imaginary units.

Lemma B.1.3 ([186]). There exists a unit ε ∈ O such that

ε

Φ′n(ζ)
≡ % (B.2)

is ι-odd (i.e. purely imaginary).

Proof. If n is a prime power pr 6= 2 we have

ε̄ =

{
−i ζ−1 n = 2r, r ≥ 2

ζ−1ζ−(pr−1:2) n = pr, p odd prime
(B.3)

where : means division in (Z/prZ)×. In the general case, n =
∏s
i=1 p

ri
i we take ε equal to ū in

Lemma B.1.1 times the product of the ε associated to each prime power in the product. If s

is odd % is purely imaginary and we are done. If s is even, % is real, and we multiply it by the

imaginary unity in Lemma B.1.2.
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Corollary B.1.1. For all fractional ideal a of K we have

a∗ = %/ā, for a certain % ∈ K× with ι(%) = −%. (B.4)

If n̆ is not of a power of an odd prime, we may alternatively choose % to be real by multiplying it

by the appropriate imaginary unit.

B.2 Proof of Lemma B.1.1

Lemma B.2.1. Let n = pr11 · · · pnss and ζ a primitive n-th root of unity. We write ζprii
for a

primitive prii root of unity. Then

Φ′n(ζ) = u
∏
i

Φ′pri (ζprii
) u is a unit of Z[ζ] (B.5)

Here Φ′n denotes the derivative of the polynomial Φn.

Proof. We shall use the symbol ∼ to mean equality up to multiplication by a unity. If n is a prime

power there is nothing to show, so we assume n is divisible by two distinct primes.

We consider first the case of n = p1p2 · · · ps square-free (and s ≥ 2). Then

Φ′n(ζ) =
∏

(a,n)=1
a 6=1

(ζ − ζa) = ζφ(n)−1
∏

(a,n)=1
a6=1

(1− ζa−1) ∼

∼
∏

(a,n)=1
(a−1,n)=p1...p̂i...ps

(1− ζi) ∼
∏
i

(1− ζi)mi
(B.6)

where ζi is a primitive pi-root of unity and mi are certain integers to be determined. To determine

the mi it is enough to compute the norm of the lhs which is the discriminant of the cyclotomic

polynomial. Hence

±
∏
i

p
φ(n)
i

p
φ(n)/(pi−1)
i

∼
∏
i

p
miφ(n)/(pi−1)
i (B.7)

so mi = pi−2. On the other hand Φ′pi(ζi) ∼ (1−ζi)pi−2, so the Lemma is proven for n square-free.

Now let n = pr11 p
r2
2 · · · prss and q = p1p2 · · · ps its radical (which is square-free by definition). One

has

Φn(x) = Φq(x
n/q). (B.8)

Hence Φ′n(x) = (n/q)xn/q−1 Φ′q(x
n/q) and

Φ′n(ζn) ∼ n

q
Φ′q(ζq) ∼

(∏
i

pri−1
i

) ∏
i

Φ′pi(ζpi) ∼
∏
i

Φ′
p
ri
i

(ζprii
). (B.9)
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C Code for cluster characters

This is a short Mathematica code that computes the Lc polynomials of section 19.2.1. Up to an

overall normalization factor, the Lc polynomials are the cluster characters. The algorithm follows

precisely the procedure described in section 19.2.1.

(*set the incidence matrix of the cluster algebra*)

Dirac = {{0, 0, 1, 0, 0, 0, 0, 1}, {0, 0, 0, 1, 0, -1, 0, 0}, {-1, 0,

0, 1, 0, 0, 0, 0}, {0, -1, -1, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0,

0, -1, -1}, {0, 1, 0, 0, 0, 0, 1, 0}, {0, 0, 0, 0, 1, -1, 0,

0}, {-1, 0, 0, 0, 1, 0, 0, 0}}

(*the rows are the dimension vectors of the projectives*)

string = {1, 3, 4, 2};

(*=======================================================*)

Print["Pfaffian: ", Sqrt[Det[Dirac]] ];

AllArrows = Position[-Dirac, 1];

var = Table[ToExpression["x" <> ToString[i]], {i, 1, Length[Dirac]}];

(*indicare come stringa i vertici successivi raggiunti*)

arrows[string_] :=

Table[{string[[i]], string[[i + 1]]}, {i, 1, Length[string] - 1}];

arrowsandinverse[str_] := Join[arrows[str], Reverse /@ (arrows[str])];

NoStringArrows = Complement[AllArrows, arrowsandinverse[string]];

Amat[ci_] :=

If[MemberQ[AllArrows,

ci], {{var[[ ci[[2]] ]], 0}, {1,

var[[ ci[[1]] ]]}}, {{var[[ ci[[1]] ]], 1}, {0,

var[[ ci[[2]] ]]}}];

texp[str_, n_] :=

Plus @@ (SparseArray[# -> 1, Length[Dirac]] & /@ (#[[2]] & /@

Select[NoStringArrows, #[[1]] == str[[n]] &]));

sexp[str_, n_] :=

Plus @@ (SparseArray[# -> 1, Length[Dirac]] & /@ (#[[1]] & /@

Select[NoStringArrows, #[[2]] == str[[n]] &]));

Vmat[str_,

n_] := {{Times @@ (var^texp[str, n]), 0}, {0,

Times @@ (var^sexp[str, n])}};

char[str_] :=

1/(Product[var[[ str[[i]] ]], {i, 1, Length[str]}]) ({1, 1}.Vmat[str,

1].Dot @@

Table[Amat[str[[i ;; i + 1]] ].Vmat[str, i + 1], {i, 1,

Length[str] - 1}].{1, 1})
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charloop[str_] :=

1/(Product[

var[[ str[[i]] ]], {i, 1, Length[str]}]) Tr@(Vmat[str, 1].Dot @@

Table[Amat[str[[i ;; i + 1]] ].Vmat[str, i + 1], {i, 1,

Length[str] - 1}])

(*example*)

Print["The cluster character corresponding to ", string, " is ",

If[Length[string] > 1 && string[[1]] == string[[Length[string]]],

Simplify[charloop[string]],

Simplify[char[string]] ]];

D Code for cluster automorphisms

This short Mathematica script is useful to find generators and relations for the automorphisms

of the cluster exchange graph. The formulas used to implement the mutations for the exchange

matrix Bij and the dimension vectors dl (where l is an index that runs over the nodes) are the

following:

µk(B)ij =

{
−Bij , i = k or j = k

Bij + max[−Bik, 0]Bkj +Bik max[Bkj , 0] otherwise.
(D.1)

µk(d)l =

 dl, l 6= k

−dk + max
[∑

i max
[
Bik, 0

]
di,
∑

i max
[
−Bik, 0

]
di

]
l = k

(D.2)

The procedure of this script is explained in section 17.

(*general functions*)

(*mutation b matrix*)

mub[b_, k_] :=

Table[If[i == k || j == k, -b[[i, j]],

b[[i, j]] + Max[0, -b[[i, k]]] b[[k, j]] +

b[[i, k]] Max[0, b[[k, j]]]], {i, 1, Length[b]}, {j, 1,

Length[b]}];

(*mutation d-vectors*)

mud[d_, {b_, k_}] :=

Table[If[l != k,

d[[l]], -d[[k]] +

Max /@ Transpose[{Sum[

Max[b[[i, k]], 0] d[[i]], {i, 1, Length[d]}],

Sum[Max[-b[[i, k]], 0] d[[i]], {i, 1, Length[d]}]}]], {l, 1,
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Length[d]}]

(*how b transforms after a sequence of mutations*)

mudseqb[seq_, b_] :=

Thread[List[FoldList[mub, b, seq], Join[seq, {0}]]];

(*how a d-vector transforms after a sequence of mutations*)

mudseq[seqBmenoLast_, b_, d_] := Fold[mud, d, seqBmenoLast];

(*creating the permutation associated to a mutation sequence*)

PermD[seq_, b_, d_] :=

FindPermutation[

Plus @@ b + Sqrt[2] (Max /@ Transpose[b]) +

Sqrt[3] (Min /@ Transpose[b]),

Plus @@ Last[mudseqb[seq, b]][[1]] +

Sqrt[2] (Max /@ Transpose[Last[mudseqb[seq, b]][[1]] ]) +

Sqrt[3] (Min /@ Transpose[Last[mudseqb[seq, b]][[1]] ])];

(*composing different sequences*)

ComposizioneSequenzeConPermutazione[{seq2_, perm2_}, {seq1_,

perm1_}] := {Join[seq1, PermutationReplace[seq2, perm1]],

PermutationProduct[perm2, perm1]}

(*checking whether two b matrices are related by a permutation*)

EqualPermb[A_, B_] :=

Expand[CharacteristicPolynomial[A, z]] ==

Expand[CharacteristicPolynomial[B, z]] && (Sort[

Plus @@ A + Sqrt[2] (Max /@ Transpose[A]) +

Sqrt[3] (Min /@ Transpose[A])] ==

Sort[Plus @@ B + Sqrt[2] (Max /@ Transpose[B]) +

Sqrt[3] (Min /@ Transpose[B])]);

(*checking whether two d vectors are related by a permutation*)

EqualPermd[A_, B_] := Sort[A] == Sort[B];

(*checking the order of a sequence*)

OrdineNEW[randseqCONPerm_] :=

Module[{ord = 0, index = 2, randseq1 = randseqCONPerm,

randseqtemp = randseqCONPerm, b = b, d = d},

If[EqualPermd[mudseq[Drop[mudseqb[randseq1[[1]], b], -1], b, d], d],

ord = 1, ord = 0];

While[ord == 0 && index <= 45,

If[EqualPermd[

mudseq[Drop[

mudseqb[ComposizioneSequenzeConPermutazione[randseqtemp,

randseq1][[1]], b], -1], b, d], d], ord = index;
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randseq1 =

ComposizioneSequenzeConPermutazione[randseqtemp, randseq1];,

index++;

randseq1 =

ComposizioneSequenzeConPermutazione[randseqtemp, randseq1];];];

ord]

(*checking the sl2Z relations for S and T generators*)

Relationssl2NEW[{Sconperm_, Tconperm_}] :=

OrdineNEW[

ComposizioneSequenzeConPermutazione[Sconperm, Tconperm]] == 6 &&

EqualPermd[

mudseq[Drop[

mudseqb[ComposizioneSequenzeConPermutazione[Sconperm,

ComposizioneSequenzeConPermutazione[Sconperm, Tconperm]][[

1]], b], -1], b, d],

mudseq[

Drop[mudseqb[

ComposizioneSequenzeConPermutazione[Tconperm,

ComposizioneSequenzeConPermutazione[Sconperm, Sconperm]][[

1]], b], -1], b, d] ] &&

EqualPermd[

mudseq[Drop[

mudseqb[ComposizioneSequenzeConPermutazione[Sconperm,

ComposizioneSequenzeConPermutazione[Tconperm,

ComposizioneSequenzeConPermutazione[Tconperm, Tconperm]]][[

1]], b], -1], b, d],

mudseq[

Drop[mudseqb[

ComposizioneSequenzeConPermutazione[Tconperm,

ComposizioneSequenzeConPermutazione[Tconperm,

ComposizioneSequenzeConPermutazione[Tconperm, Sconperm]]][[

1]], b], -1], b, d] ];

(*Example E7 MN*)

b = {{0, 3, -1, -1, -1, -1, -1, -1, -1}, {-3, 0, 1, 1, 1, 1, 1, 1,

1}, {1, -1, 0, 0, 0, 0, 0, 0, 0}, {1, -1, 0, 0, 0, 0, 0, 0,

0}, {1, -1, 0, 0, 0, 0, 0, 0, 0}, {1, -1, 0, 0, 0, 0, 0, 0,

0}, {1, -1, 0, 0, 0, 0, 0, 0, 0}, {1, -1, 0, 0, 0, 0, 0, 0,

0}, {1, -1, 0, 0, 0, 0, 0, 0, 0}};

d = -IdentityMatrix[9];
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(*NEW Algorithm to find some generators and their order*)

Print[Dynamic[ii]];

MaxLength = 60;

MAX = 200000000;

ListAutomorph = {};

For[ii = 0, ii < MAX, ii++,

length = RandomInteger[{1, MaxLength}];

randseq = RandomInteger[{1, Length@b}, length];

If[EqualPermb[Last[mudseqb[randseq, b]][[1]], b], index = 2;

randseq = {randseq, PermD[randseq, b, d]};

randseqtemp = randseq;

AppendTo[ListAutomorph, randseq];

If[EqualPermd[mudseq[Drop[mudseqb[randseq[[1]], b], -1], b, d], d],

ord = 1, ord = 0];

While[ord == 0 && index <= 19,

If[EqualPermd[

mudseq[Drop[

mudseqb[ComposizioneSequenzeConPermutazione[randseqtemp,

randseq][[1]], b], -1], b, d], d], ord = index;

randseq =

ComposizioneSequenzeConPermutazione[randseqtemp, randseq];,

index++;

randseq =

ComposizioneSequenzeConPermutazione[randseqtemp, randseq];

If[! EqualPermb[Last[mudseqb[randseq[[1]], b]][[1]], b],

Print["Failed: "]; index = 10000;];];];

If[ord != 1 , Print["Order: ", ord, " ; Sequence: ", randseqtemp];]

];]

E Weyl group of E6

With this short Mathematica script, we explicitly construct the Weyl group of E6 over the basis of

simple roots.

n = 6;

Projectives = {{1, 1, 1, 0, 0, 0}, {0, 1, 1, 0, 0, 0}, {0, 0, 1, 0, 0,

0}, {0, 0, 1, 1, 0, 0}, {0, 0, 1, 0, 1, 0}, {0, 0, 1, 0, 1, 1}};

(*Cartan Matrix*)

Cartan = Inverse[Projectives] + Transpose[Inverse[Projectives]];

SimpleRoots = IdentityMatrix[n];
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SimpleWeylGroup =

Join[Table[

IdentityMatrix[n] -

KroneckerProduct[SimpleRoots[[i]], SimpleRoots[[i]]].Cartan, {i,

1, n}], {IdentityMatrix[6]}];

sr1 = SimpleWeylGroup[[1]];

sr3 = SimpleWeylGroup[[2]];

sr3 = SimpleWeylGroup[[3]];

sr4 = SimpleWeylGroup[[4]];

sr5 = SimpleWeylGroup[[5]];

sr6 = SimpleWeylGroup[[6]];

WeylGroup =

FixedPoint[

DeleteDuplicates@

Partition[

Partition[Flatten[Outer[Dot, SimpleWeylGroup, #, 1]], 6],

6] &, {IdentityMatrix[6]}, 36];

Print["Order of the group: "]

Length@WeylGroup

Print["Order of the elements: "]

MatrixOrder[M_, i0_] :=

Module[{i = i0, Mat = M},

While[MatrixPower[Mat, i] != IdentityMatrix[n], i++]; i]

DeleteDuplicates[MatrixOrder[#, 1] & /@ WeylGroup]

We directly checked that the longest elements has length 36, that the order of the Weyl group is

51840 = 27345

and the order of each element belongs to this set:

{1, 3, 2, 5, 4, 6, 12, 8, 10, 9}.
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[19] P. Argyres, M. Lotito, Y. Lü and M. Martone, Geometric constraints on the space of N
= 2 SCFTs. Part I: physical constraints on relevant deformations, JHEP 1802, 001 (2018)

[arXiv:1505.04814 [hep-th]].
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[21] P. C. Argyres, M. Lotito, Y. Lü and M. Martone, Expanding the landscape of N = 2 rank 1

SCFTs, JHEP 1605, 088 (2016) [arXiv:1602.02764 [hep-th]].
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[108] Grégoire Dupont. Generic variables in acyclic cluster algebras. Journal of Pure and Applied

Algebra, 215(4):628–641, 2011.

[109] E. Dynkin, Semi-simple subalgebras of semi-simple Lie algebras, AMS Transl. 6 (1957) 111-

244.

[110] T. Eguchi and K. Hori, N=2 superconformal field theories in four-dimensions and A-D-E

classification, In “Saclay 1996, The mathematical beauty of physics” 67-82 [hep-th/9607125].

[111] M. Eie, Dimension formulae for the vector spaces of Siegel cusp forms of degree three (II),

Memoirs of the AMS 70 373 (1987).

[112] D. Eisenbud, Commutative Algebra with a view toward Algebraic Geometry, Graduate Text

in Mathematics 150, Springer, 2004.

[113] B. Farb and D. Margalit. A Primer on Mapping Class Groups, Princeton University Press,

2012.

[114] W. Feit, Some integral representation of complex reflection groups, J. of Algebra 260 (2003)

138-153.

[115] V. Fock and A. Goncharov. Cluster ensembles, quantization and the dilogarithm. arXiv

preprint math.AG/0311245.

[116] V. Fock and A. Goncharov. Dual Teichmuller and lamination spaces. arXiv preprint

math/0510312, 2005.

[117] Sergey Fomin, Michael Shapiro, and Dylan Thurston. Cluster algebras and triangulated

surfaces. Part I: Cluster complexes. Acta Mathematica, 201(1):83–146, 2008.

[118] Sergey Fomin and Andrei Zelevinsky. Cluster algebras I: foundations. Journal of the American

Mathematical Society, 15(2):497–529, 2002.

[119] F. Forstneric, Stein Manifolds and Holomorphic Mappings. The Homotopy Principle in Com-

plex Analysis, A Series of Modern Surveys in Mathematics 56, Springer, 2011.

[120] D. S. Freed, Special Kahler manifolds, Commun. Math. Phys. 203, 31 (1999) [hep-

th/9712042].
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