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Abstract

Since its introduction in 1970 in the context of two-dimensional hydrodynamics, the Kadomtsev–
Petviashvili (KP) Equation has been rediscovered in several, seemingly unrelated, areas of
pure and applied Mathematics; in this respect the KP Equation shares the interdisciplinary
nature of its one-dimensional counterpart, the Korteweg–De Vries Equation.

Despite the growing interest towards the KP Equation, little is known about the evolution
of a generic, localised initial datum, particularly in the small dispersion limit.

This thesis aims at addressing precisely this topic. To this end, the long-time behaviour of
the KPI Equation is studied by means of high-quality numerical computations; the numerical
results show that generically the positive part of KP’s dispersive waves are subject to a
focusing instability phenomenon, and that this instability leads to the formation of a number
of two-dimensional solitons, which arrange in a triangular lattice, and whose height and
position scales with the dispersion coefficient.

We give a precise mathematical description of the numerical observations by deriving
the modulation equations for the KP case by means of Whitham’s averaging procedure.
Whitham’s theory is applied both in the general case of KP’s traveling waves and in the
special case of the line soliton solution, that is considered here as an approximation of the
leading wave front in a packet of dispersive shock waves. We infer from Whitham’s equa-
tions for the line soliton the existence of a caustic singularity that is responsible for the wave
breaking observed numerically.

A further analysis of the modulation system for the line soliton leads us to point out
an analogy between the KP Equation and the semiclassical limit of the focusing nonlinear
Schrödinger Equation. Following this observation, we propose an asymptotic expression for
the location of the KP solitons, corroborated by extensive numerical computations.

The numerical computations involved in this thesis are a particularly delicate task, due
to the high quality results required in the small dispersion case and to the stiff, non-local,
linear operator. For this reason, particular care is devoted to the study of a suitable time
advancement method and to the crafting of an ad-hoc, parallel, numerical code.
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1

Chapter 1

Introduction

The Kadomtsev–Petviashvili (KP) Equation is one of the most popular models for two-
dimensional wave propagation. This equation describes the time evolution of a two-dimensional
disturbance over the surface of a shallow basin by specifying a scalar function u(x, y, t) that
can be interpreted as the displacement of the surface with respect to a reference level. If the
initial disturbance is prescribed by the scalar function u(x, y, 0) = u0(x, y), with u0 a known
function, then in the KP model the propagation of such disturbance is held by the following
partial differential equation: (

ut + uux + ε2uxxx
)
x

+ αuyy = 0, (1.1)

where x and y represent the two space coordinates, t is the time coordinate, ε is a disper-
sion/scaling coefficient, and α = ±1 will be discussed in the next section.

It is known that a generic, localised initial datum evolves under the KP flow by forming a
region with high gradients that leads to the formation in finite time of an oscillatory region;
and that the oscillations’ frequency is inversely proportional to the dispersion coefficient as ε
approaches zero. These high frequency oscillations are called dispersive shock waves.

This thesis is concerned with the study of the formation, propagation and stability of
dispersive shock waves in the KP Equation over long times.

The structure of this exposition is the following. In the first section of the current chapter,
the generic structure of wave formation and propagation is sketched, presenting known and
new results that will be covered in greater detail in other parts of the thesis. The rest of this
chapter is devoted to the introduction of the KP Equation and to recall some of the many
mathematical properties enjoyed by these equations.

In Chapter 2, Whitham’s theory is recalled and applied to the KP Equation, leading to
the explicit formulation of a modulation system for the line soliton and the lump solutions of
the KPI Equation.

Then, a numerical approach for obtaining high quality approximations to the KP wave
propagation is discussed in Chapter 3. The dispersive, non-local, stiff nature of the linear
part of the KPI Equation makes its numerical approximation a particularly difficult task, and
the efforts to provide an accurate, yet efficient, numerical code led us to the development
of a Composite Runge–Kutta method with a new, ad-hoc, low-fast splitting. The detailed
derivation of this numerical integrator, as well as a comparison with other highly efficient
schemes are the main topic of Chapter 3.

The low-level details on the practical implementation of a computer code and on its parallel
algorithms are presented in Chapter 4.

Finally, a detailed numerical study of the small dispersion KPI Equation is the main
theme of Chapter 5. Besides, in Chapter 5 the scaling laws for lump position and height are
determined numerically and compared with the known scalings for the semiclassical limit of
the focusing nonlinear Schrödinger Equation.

Part of the results of this thesis can be found in published form in the joint work of the
author with Tamara Grava and Christian Klein [57].
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1.1 Nonlinear waves and the KP Equation

For over two centuries, many simplified models have been proposed for describing the motion
of surface waves of an incompressible fluid. Here the word “simplified” is used to qualify
models that are much simpler than the full, general, hydrodynamic equations (such as the
Euler or the Navier–Stokes Equations) that could be adopted for describing a great deal of
flow configurations, including wave motion. Such simplified models originate from several
hypotheses that aim at describing wave motion only for a specific propagation regime. A fre-
quent kinematic assumption is that of waves having an essentially monodimensional direction
of propagation, neglecting to some extent the inherently three dimensional motion of fluids.
Often this leads to the introduction of a single scalar quantity1, u, that denotes both the
height of the fluid surface above an initially unperturbed level, and the average speed of the
fluid in a certain region of space. Another recurring assumption is the dimensionality of the
wave propagation problem, that can be reduced to a one-dimensional motion if the distur-
bance can be considered “very long” with respect to the channel’s depth, or two-dimensional
if such “long wave” hypothesis does not hold, but there is no mixing between fluid layers at
different depth. A third assumption that characterises wave propagation regimes is related
to the depth of the channel or basin in which the fluid is confined. We will not re-derive here
any of the wave equations, limiting ourselves to a brief panoramic view of some of the most
important models, and referring to [5] for a broader treatment.

One of the earliest and most widely known of the many wave models is undoubtedly the
Korteweg–De Vries (KdV) Equation:

ut + ux + uux + uxxx = 0. (1.2)

The KdV Equation was derived for the description of essentially monodimensional wave prop-
agation along a shallow channel, and it was immediately recognised that despite its simplicity
can describe with very good accuracy the physics of shallow water waves propagating in one
dimension. By considering the linear part of Equation (1.2):

ut + ux + uxxx = 0, (1.3)

and seeking for a traveling wave solution:

u(x, t) = aei(kx−ωt), (1.4)

leads to an algebraic compatibility condition often called dispersion relation. For the KdV
Equation, the dispersion relation has the form:

ω = k − k3

3
, (1.5)

which is a fourth-order accurate expansion of the nonlinear dispersion relation for wave prop-
agation in shallow water:

ω = tanh k. (1.6)

In this work, the KdV Equation is considered in a slightly different form:

ut + uux + ε2uxxx = 0, (1.7)

which follows from (1.2) after a change of reference frame and the introduction of a rescaling
dependent on ε > 0. More precisely, by introducing a reference frame moving with constant
unitary speed in the x-direction, whose coordinates are:

X = x− t, T = t, (1.8)

1There exist many other wave models whose formulation consists of systems of scalar quantities, such as
the Airy model for shallow waters, that incorporates the mean velocity and the surface height.
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then the solution u, written in terms of the new coordinate frame becomes:

U(X,T ) = u(x, t), (1.9)

and the time derivative transforms as:

ut = UT
∂T

∂t
+ UX

∂X

∂t
= UT − UX . (1.10)

The space derivatives are not affected by the coordinate change (1.8), so the KdV Equa-
tion (1.2) in the new variables becomes:

UT + UUX + UXXX = 0, (1.11)

so that after a renaming, Equation (1.11) is equivalent to the (1.7) with ε = 1.
After the groundbreaking work of Korteweg and De Vries, several other models for one-

dimensional wave propagation have appeared, among which we mention the following.

Benjamin–Bona–Mahony (BBM). Introduced in [17] has the form:

ut + ux + uux − uxxt = 0, (1.12)

and was derived under the same assumptions of the KdV Equation, but with a dif-
ferent expansion for the dispersion relation. Specifically, the dispersion relation for
Equation (1.12) is given by:

ω =
k

1 + k2
, (1.13)

which comes from a Padé expansion of order (2, 2) of the nonlinear dispersion rela-
tion (1.6).

Benjamin–Ono (BO). Introduced in [16] and further discussed in [104], is a model for the
study of internal wave propagation in channels of infinite depth, and has the form:

ut + ux + uux +Huxx = 0,

where H is the Hilbert transform, defined as:

Hu(x) =
1

π

 ∞
−∞

u(y)

y − x dy. (1.14)

In this case, there is no immediate analogy with the KdV and the BBM models, since
in the deep wave regime the dispersion relation is different than Equation (1.6).

Camassa–Holm (CH).

ut + ux + uux − uxxt = (u(u− uxx))x (1.15)

This model was derived in [26] as a higher order extension of the BBM Equation,
and indeed Equation (1.15) shares the dispersion relation (1.13) of the BBM model.
Remarkably, the fully nonlinear dispersion allows for the description of wilder scenarios,
such as wave breaking. The authors of the original paper [26] immediately recognised
the existence of soliton solutions with discontinuous first derivative, sometimes called
“peakons”, with expression:

u(x, t) = ae−|x−at|. (1.16)

Wave modelling is still a very active research field, and over the years countless generalisa-
tions or perturbations of the four main classes described above have been proposed. These
Equations, despite being introduced for hydrodynamics applications, have many remarkable
properties which makes their study an interesting mathematical pursuit regardless of their
physical origin.
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In an effort to generalise the KdV Equation, Kadomtsev and Petviashvili [75] derived
what is probably the most popular model of two-dimensional dispersive wave propagation.
The resulting equation, that now bears their name and will be abbreviated with KP in the
following, was derived for the description of wave propagation on a two dimensional surface
under nonlinear dispersion, with the hypothesis that the direction of propagation is essentially
monodimensional, with weak dependence on the orthogonal direction. The form of the KP
Equation chosen in the present work is:(

ut + uux + ε2uxxx
)
x

+ αuyy = 0. (1.17)

The case of strong surface tension is characterised by α = −1 and is called the KPI Equation,
while the case with weak surface tension corresponds to α = 1 and is called the KPII Equation.
For more details on this characterisation, we refer to [4, § 1.2]. It is often convenient to recast
Equation (1.17) in evolutionary form:

ut + uux + ε2uxxx + α∂−1x uyy = 0, (1.18)

where the antiderivative can be defined in Fourier components:

∂−1x u =

ˆ ∞
−∞

ˆ ∞
−∞

1

iξ1
û(ξ1, ξ2, t)e

iξ1xeiξ2y dξ1 dξ2, (1.19)

with
û(ξ1, ξ2, t) :=

1

2π

ˆ ∞
−∞

ˆ ∞
−∞

u(x, y, t)e−iξ1xe−iξ2y dx dy, (1.20)

or alternatively with the integral:

∂−1x u =

ˆ x

−∞
u(s, y, t) ds, (1.21)

but see the discussion in Section 1.3.4 on the definition of this term.
Since its introduction in 1970, the KP Equation has appeared in many seemingly unrelated

branches of Pure Mathematics, see [103] for a review on the connections of the KP Equation
with higher structures in Algebra and Geometry. The small dispersion (ε � 1) regime is
particularly important in the study of initial data for the Cauchy problem:

(ut + uux + uxxx)x + αuyy = 0 u(x, y, 0) = u0(x, y) (1.22)

in the case when u0 is a slowly-changing function of x and y. In this case, it is expected that
the space derivatives are small, and this in turn implies that the time derivative is small too.
As a result, the time evolution can be expected to be slow. A possible workaround to study
the time evolution while keeping t ' O(1) is to consider the scaling:

U(X,Y, T ) = u(εx, εy, εt), (1.23)

so that Equation (1.22) for u(x, y, t) becomes:(
UT + UUX + ε2UXXX

)
X

+ αUY Y = 0 (1.24)

for the rescaled unknown U(X,Y, T ).

1.2 Shock wave formation in the KPI Equation

In this section we sketch the general mechanism by which dispersive shock waves form and
propagate in the KPI Equation under small dispersion, ε � 1. This process is generically
characterised by two singular points. A first singularity appears in the solution to the dis-
persionless KP Equation, that can be solved explicitly by a deformation of the characteristics
method, and is related to the onset of oscillations in the dispersive equation. This first singular
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behaviour was discovered in [42], further investigated in [58], and studied numerically in [82].
After the dispersive shock waves have developed, these start propagating along a parabolic
wavefront, until for a sufficiently long time the leading positive wavefront manifests a focusing
instability leading to the development of a very high, fast-moving, and localised peak, which is
asymptotically approximated by a lump solution. For even longer times, more lumps emerge
from the focusing of the secondary wavefronts, which after a complex interaction with the
dispersive shock waves arrange in a triangular lattice. This generic behaviour was completely
unknown for the KP equation and it was discovered by performing high quality numerics.

For negative initial data, the first singularity described by the dispersionless limit does
still develop, leading to the formation of dispersive shock waves of negative mean value, but
the second singularity does not appear, at least for the time scales considered in this work.
This could be related to the fact that numerically the dispersive shock waves with negative
mean seem to be stable [83]. In the article [58], it is shown that two singular points appear in
the solution: one in the negative part and one in the positive part. Both singular points are
responsible for the formation of two fronts of dispersive shock waves, appearing respectively
in the negative and in the positive part of the solution. For the KPI Equation, the shock in
the positive part of the solution is stronger, and develops earlier than in the negative part
of the solution; conversely, for the KPII Equation the negative shock is stronger, and takes
place at an earlier time than in the positive part of the solution.

1.2.1 Shock wave formation

A valid tool for studying the onset of a shock in the small dispersion regime is given by the
dispersionless KP (dKP) Equation, obtained by setting ε = 0 in Equation (1.17):

(ut + uux)x + uyy = 0. (1.25)

Note that despite its name, Equation (1.25) is actually an equation of dispersive nature. By
considering a change of variables in the form:

u→ −u,
t→ −t (1.26)

it is possible to obtain from the (1.25) its counterpart for the KPI Equation:

(ut + uux)x − uyy = 0. (1.27)

This equation provides one of the simplest models for the development and propagation of
shock waves in two space dimensions. In analogy with the Hopf Equation in 1D:

ut + uux = 0, (1.28)

Equation (1.25) does develop a singularity at a single point (xc, tc) in finite time tc, where
the solution remains bounded and takes the value uc = u(xc, yc, tc).

A useful tool developed in [96, 97, 58] for solving explicitly Equation (1.25) is a two-
dimensional deformation of the characteristics method, where the solution is given by:

u(x, y, t) = F (η, y, t), (1.29)

and η is defined implicitly as: {
x = tF (η, y, t) + η

F (x, y, 0) = u(x, y, 0).
(1.30)

Grava, Klein and Eggers proceed showing that F is a solution of the following PDE:(
Ft + tF 2

y

1 + tFη

)
η

= αFyy, (1.31)
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that can also be written in the evolutionary form:

Ft = −α∂−1η Fyy + t
(
Fη∂

−1
η Ftt − F 2

y

)
. (1.32)

The nonlinear part of Equation (1.32) is multiplied by t, so for small times the equation for
F is “less nonlinear” than the dKP Equation. As a result the PDE (1.31) remains regular
for times longer than tc; this allows to detect the singular point as the point at which the
transformation (1.30) is no longer invertible for η, which mimics the crossing of characteristics
in the Hopf Equation. The authors are also able to show that generically the singularity of
the dKP Equation unfolds as a cusp catastrophe.

In [58] the singular behaviour of the dKP Equation is further studied by means of multiple
scale expansions close to the singularity point; this approach allows the authors to find the
region where the solution given by characteristics is multiple valued, and to track the shock
front. They also show that the behaviour close to the shock front follows a universal scal-
ing, which is generically a 3/2 cusp. A similar parabolic profile for the leading front of the
multivalued region is found in [111], even for a more general class of modified KP Equations.

In the work [42], the authors obtain a small-ε expansion for the KP Equation in a neigh-
bourhood of the singular point:

u(x, y, t) = uc + 6

(
ε2

κ2

) 1
7

U(ξ, τ) + β(y − yc) +O(ε
4
7 ), (1.33)

where

X = (x− xc) = uc(t− tc) + c1(t− tc)(y − yc) + c2(y − yc) + c3(y − yc)2 + c4(y − yc)3
T = (t− tc) + b(y − yc)

ξ =
X

(κε6)1/7

τ =
T

(κ3ε4)1/7
,

(1.34)
for c1, c2, c3, c4, b, β, κ constants, and the function U is a solution of the Painlevé I2 Equation
(see Section 1.3.7 for self-similar solutions given in terms of Painlevé Transcendents):

ξ = 6τU −
(
U3 +

1

2
U2
ξ + UUξξ +

1

10
Uξξξξ

)
, (1.35)

complemented by suitable asymptotic conditions. The fact that these oscillations are de-
scribed by transcendent functions reveals the inherently nonlinear nature of shock formation.
This could be expected, given the large energies involved with shock waves.

1.2.2 Shock propagation and instability

We conclude the discussion by illustrating the behaviour described above with the help of a
numerical computation. We consider the initial datum:

u(x, y, 0) = −6∂x sech2
√
x2 + y2, (1.36)

shown in Figure 1.1 (left), where it can be seen that the initial datum consists of two peaks, a
negative and a positive one, oriented along the x axis. The evolution of the initial datum under
the flow of the KPI Equation can be inferred from the sequence of snapshots of Figure 1.1.
Initially, since the dispersion coefficient is small, the evolution is dominated by the nonlinear
term, which induces a steepening of both the positive and negative parts of the solution, thus
forming a shock front. As discussed above, when the solution approaches the breakup time of
the dKP Equation, the wavefront gradients become strong enough that the dispersive term
ε2uxxx, despite the small constant, can compensate the focusing effect of the nonlinearity,
dispersing away some energy in the form of high frequency oscillations, shown in Figure 1.1
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(center). In [58], the exact location of the singularity is given both for the positive and the
negative part of the solution, and it is found that the positive part develops a singularity at
t = 0.222, and the negative part at t = 0.300. Note that the plot in the center of Figure 1.1
corresponds to a time (t = 0.77) when both singularities have already appeared, leading to
the development of the two fronts of dispersive shock waves. For even longer times, a second
breaking in the form of wave instability takes place in the positive part of the solution. Such
instability consists in a wave focusing leading to the appearance of very high, localised peaks
which arrange in a triangular lattice (shown in Figure 1.1 (right)) and propagate away at high
speed, while keeping their original shape. This orderly arrangement of lumps is the result of
a complex interaction between lumps and dispersive shock waves.

A detailed numerical investigation of dispersive shock waves in the KP Equation is avail-
able in [7]. In the cited work, a step-like initial datum with parabolic front is evolved numer-
ically, showing the emergence of line solitons with parabolic front. The results for the KP
Equation are then compared with a two-dimensional version of the Benjamin–Ono Equation.

Figure 1.1: Snapshots taken from the time evolution of the initial da-
tum (1.36) under the KPI flow with ε = 0.03. For the meaning of the colours,
we refer to the colorbar in Figure 1.2. On the left, the initial datum at t = 0.
At the center (t = 0.42), the dispersive shock waves forming after the first
breakup time are clearly visible both in the positive and in the negative part
of the solution. On the right (t = 0.77), after the second breakup time the
first lumps appear and interact with the dispersive shock waves arranging in a

triangular lattice.

This behaviour is typical of the KPI Equation. For the KPII Equation, a highly oscillatory
region still develops, but with an opposite curvature of the wavefront, and the wavefronts
themselves are stable. A comparison of the KPI and KPII flow for the same value of ε and
for the same initial datum is available in Figure 1.2 as pseudocolor plot and in Figure 1.3 as
a surface plot.

Figure 1.2: Evolution of the initial datum (1.36) for ε = 0.1 at t = 0.8 for the
KPI (left) and KPII (right) Equations. For a three-dimensional visualisation

of these same plots, see Figure 1.3.



8 Chapter 1. Introduction

Figure 1.3: Snapshots of the solution to the KPI (left) and KPII (right)
Equations at time t = 0.8 for the initial datum (1.36) and ε = 0.1. In the KPI
Equation the lump is clearly visible in the form of a very high and localised
peak. This figure displays the same information shown with a pseudo-color

plot in Figure 1.2.

1.2.3 New contributions

The purpose of this work is to study the propagation of dispersive shock waves in the KPI
Equation for times longer than those considered in the existing literature. A possible interpre-
tation of the long-time behaviour must rely on the analysis of the two main competing effects
of dispersion and nonlinearity. After the dispersive shock waves have formed according to
the mechanism summarised in Section 1.2.2, these may keep propagating in purely dispersive
fashion, transporting energy away from the initial disturbance, thus leading to a motionless
state for t → ∞, or it may be the case that the nonlinear effects balance the dispersion by
creating stable structures such as solitons in the Korteweg-De Vries Equation. A third possi-
bility, studied in [84] for generalised KP Equations with a higher order nonlinearity is that the
nonlinear term concentrates mass in a certain region of space sufficiently fast that the linear
operator is not able to disperse away this buildup of mass, leading to blowup in finite time.
Blowup is however ruled out for the standard KP Equation, since well posedness has been
proved for all times, as discussed in Section 1.3.8. The generic nature of lump formation, and
their arrangement in a orderly structure is however new and is the main result of this work.

The numerical results are complemented by the derivation of the modulation equations for
the line soliton and lump solutions of the KP Equation. The modulation equations for the line
solitons are viewed as an approximation for the much more complex modulation equations
for the packet of dispersive shock waves, and the study of their properties justifies theoret-
ically the breaking phenomenon. This result has been discovered by means of high quality
numerical computations, and later described precisely by applying Whitham’s method of wave
modulations. Whitham Modulation Theory allows to describe the wavefronts appearing on
the positive part of the solution after the first breakup as modulated line solitons. The mod-
ulation equations for the line soliton are elliptic, and it is known from the theory of elliptic
systems that these generically develop a caustic singularity, which represents the focusing ef-
fect up to a critical time (second breakup time) when the lump detaches from the line soliton.
Modulation equations are derived for the lump too, and the resulting system of conservation
laws is also in this case elliptic. We refer to Section 2.6 for a possible interpretation of this
fact.

For times longer than the second breakup time, Whitham’s theory does not seem to be an
effective tool. For this reason, we study numerically the formation of the triangular lattice of
lumps, and we propose an analogy with the focusing nonlinear Schrödinger Equation, which
allows to extend some rigorous asymptotic results to the KP Equation.
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1.3 Properties of the KP Equation

We conclude the chapter by recalling some of the many important properties of the KP
Equation. As a matter of fact, the KP Equation has a rich mathematical structure, so much
so that it is impossible to sketch in a few pages, and the choice of topics that we succinctly
treat here is to some extent a matter of personal taste. The topics briefly summarised in the
following aim mainly towards two important properties of the KP Equation: its Lagrangian
form and the existence of exact solutions. These two properties are at the basis of the
development of modulation theory in Chapter 2. Some readable introductions to the general
theory of the KP Equation are [36, 78] and [54, Ch. 1].

1.3.1 Reductions

The KP Equation can be interpreted as a generalisation of three important equations of
Mathematical Physics: the Korteweg–de Vries (KdV) Equation, the Boussinesq Equation
and the Zakharov–Kuznetsov Equation. In addition, its dispersionless version, sometimes
also called Zabolotskaya–Khokhlov Equation, has received much attention in recent years.

Considering the KP Equation with unit dispersion in its evolutionary form:

ut + uux + uxxx + α∂−1x uyy = 0, (1.37)

it is simple to check that a solution not depending on y solves the KdV Equation:

ut + uux + uxxx = 0, (1.38)

so that conversely any solution of the KdV Equation is also a solution of both the KPI and
KPII Equations.

A stationary solution of the KPII Equation, ut = 0, satisfies:

uyy = −
(
u2

2
+ uxx

)
xx

, (1.39)

and interpreting the y variable as a time, Equation (1.39) coincides with the celebrated Boussi-
nesq Equation.

The dispersionless KP Equation (obtained by setting ε = 0) is sometimes called the
Zabolotskaya–Khokhlov Equation [115, 33]:

(ut + uux)x = uyy. (1.40)

This equation finds application as a model for wave propagation in nonlinear acoustics. As
mentioned in Section 1.2.1, we remark that despite its name, Equation (1.40) actually is a
dispersive equation.

Lastly, by considering the dispersionless KPI Equation and considering the left-moving
wave (which amounts to changing the sign of the nonlinear term, as shown in [4, § 1.2]),
yields the Zakharov–Kuznetsov Equation [121]:

utx =

(
u2

2

)
xx

+ uyy, (1.41)

which was introduced as a model for nonlinear acoustic waves in a plasma.

1.3.2 Lagrangian Structure

It is not possible to find a Lagrangian for for the KP Equation in the original variables. A
similar obstruction for the KdV Equation was pointed out directly by Whitham [116]. As for
the KdV Equation, the workaround consists in introducing a potential function ϕ such that:

ϕx = u. (1.42)
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The KP Equation, rewritten for the potential function becomes:

ϕxt + εϕxϕxx + ε2ϕxxxx + αϕyy = 0. (1.43)

A possible Lagrangian for Equation (1.43) is:

L = ε2ϕtϕx +
ε3

3
ϕ3
x − ε4ϕ2

xx + ε2αϕ2
y, (1.44)

and indeed it can be checked that the Euler–Lagrange Equations for the Lagrangian (1.44),
which generically have the form:

∂

∂t
Lϕt +

∂

∂x
Lϕx +

∂

∂y
Lϕy −

∂2

∂x2
Lϕxx = 0 (1.45)

give the correct Equation (1.43) for ϕ.
Furthermore, the existence of a Lagrangian allows, among other things, to check for the

conservation laws by means of the Noether Theorem. Namely, if it is possible to find a contin-
uous group of symmetries (sometimes also called one-parameter group of transformations) for
the Lagrangian, then Noether’s Theorem ensures the existence of a conserved quantity asso-
ciated to the symmetry group. For a detailed treatment and a proof of the Noether Theorem
in Lagrangian and Hamiltonian Mechanics see [14, 73, 65].

1.3.3 Hamiltonian Structure

For an introduction to the Hamiltonian and Multi-Hamiltonian theory of many integrable
systems, including the KP Equation, we refer to [19].

The KP Equation is an Hamiltonian equation, namely can be written in Hamiltonian form
as:

ut =
∂

∂x

(
δH
δu

)
, (1.46)

where H is an Hamiltonian functional and δ
δu denotes the Fréchet derivative with respect to

u. For the KP Equation, the Hamiltonian takes the form:

H = −
ˆ
R2

hdx dy := −
ˆ
R2

u3

6
− u2x

2
+
α

2

(
∂−1x uy

)2
dx dy, (1.47)

h being the Hamiltonian density. Written explicitly, the Fréchet derivative in this case can
be expanded as:

δH
δu

=
∂h

∂u
+

∂

∂x

∂h

∂ux
+

∂

∂−1x∂y

∂h

∂
(
∂−1x uy

) , (1.48)

So that the equivalence between (1.46) and (1.18) can be verified:

ut = − ∂

∂x

(
u2

2
+

∂

∂x
ux + α

∂

∂−1x∂y
∂−1x uy

)
= −uux − uxxx − α∂−1x uyy.

(1.49)

The existence of a Hamiltonian structure is particularly useful for studying the existence of
conserved quantitites. Indeed, a function F (u) of u is a conserved quantity if:

d

dt
F = {H, F} = 0, (1.50)

where the Poisson bracket {·} is defined as:

{H, F} =

〈
δF

δu
,
∂

∂x

δH
δu

〉
, (1.51)
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and the angled parentheses denote an inner product. The first conserved quantity, T1, can be
obtained by writing the KP Equation in the conservative form:

∂

∂t
(u) +

∂

∂x

(
u2

2
ε2uxx + α∂−2x uyy

)
= 0, (1.52)

which has the general structure:
∂T1
∂t

+
∂X1

∂x
= 0, (1.53)

with

T1 = u X1 =
u2

2
ε2uxx + α∂−2x uyy. (1.54)

Assuming X1,x to be integrable over the real plane, it is possible to integrate Equation (1.52)
to:

d

dt

(ˆ
R2

T1 dx dy

)
= 0, (1.55)

showing that the integral: ˆ
R2

udx dy (1.56)

is a conserved quantity, and u is the relative conserved density. Sometimes the relation (1.55)
is referred to as a mass conservation property.

Similarly, multiplying the KP Equation by u gives the conservation law:

∂

∂t

(
u2

2

)
+

∂

∂x

(
u3

3
+ ε2uuxx − ε2

u2x
2

+ α∂−2x uyy

)
= 0 (1.57)

which gives the conserved quantity:
ˆ
R2

u2 dx dy. (1.58)

This property is called momentum conservation and is equivalent to the conservation of the
L2(R2) norm of the solution.

In a similar fashion, it is possible to prove the energy conservation law:

d

dt

(ˆ
R2

(
−u

3

6
+
u2x
2

+
α

2

(
∂−1x uy

)2)
dx dy

)
= 0. (1.59)

Note that the conserved density in Equation (1.59) is the same as the Hamiltonian density in
Equation (1.47).

1.3.4 Symmetries and constraints

Some physically relevant symmetries of the KPI Equation are the following.

Translation invariance. If u(x, y, t) is a solution, then u(x+ x0, y+ y0, t+ t0) is a solution
for all x0, y0, t0 ∈ R.

Reflection invariance. If u(x, y, t) is a solution, then u(−x, y, t) and u(−x,−y, t) are solu-
tions.

Galilean invariance. If u(x, y, t) is a solution, then c/6 + u(x− ct, y, t) is also a solution.

Scaling invariance. If u(x, y, t) is a solution, then λ2u(λx, λ2y, λ3t) is a solution for any
λ > 0.

Rotational invariance. If u(x, y, t) is a solution, then u(x − cy − αc2t, y − 2αct, t) is a
solution for any c ∈ R.
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As mentioned briefly in Section 1.3.3, for each of these symmetries there exists a corresponding
conserved quantity.

In addition to the symmetries described above, the KP flow imposes several constraints
on the solution, first obtained in [93]. In the evolutionary form (1.18), the antiderivative has
sense if and only if the following constraint holds for any time:

ˆ
R
udx = 0. (1.60)

This result is proved in [93] under the hypothesis that u is smooth and that u, ut, as well
as all the derivatives of u with respect to x and y tend to zero as |x| → ∞. A second
constraint follows from taking the derivative of (1.60) with respect to t and replacing the
original equation (1.18) for ut: ˆ

R
∂−1x uyy dx = 0. (1.61)

Repeating one more time the same procedure, namely differentiating Equation (1.61) with
respect to t and making use of (1.18) gives a third constraint:

ˆ
R

(
∂−2x uyyyy −

1

2
(u2)yy

)
dx = 0. (1.62)

Similarly, by iterating this procedure it is possible to find an infinite number of constraints
for the solutions of the KP Equation. In [8] it is shown that the infinite number of constraints
discussed above is not required if the nonlocal term:

∂−1x uyy :=

ˆ x

−∞
u(s, y, t)yy ds (1.63)

is replaced by the symmetric form:

∂−1x uyy :=
1

2

(ˆ x

−∞
u(s, y, t)yy ds−

ˆ ∞
x

u(s, y, t) ds

)
. (1.64)

In the form of Equation (1.64), however, x integration and the limit for t → 0 cannot be
exchanged due to a discontinuity of the solution at t = 0, as proved in [20].

Even if the initial datum does not satisfy the constraints, the solution does satisfy them
for any t > 0. In this sense, in the KP Equation there is an infinite speed of propagation.
Furthermore, the solution develops immediately algebraic tails, so that even if the initial
datum is in the Schwartz space of rapidly decreasing functions, the solution is no longer in
the Schwartz space for any t > 0. More precisely, in [20] it is proved that even for an initial
datum in the Schwartz space, the solution decays immediately as:

u(x, y, t) =
c0√
tx|x|

ˆ
R2

u dx dy + o(|x|−3/2), (1.65)

for x→∞, where c0 is a constant. This fact does not contradict the momentum conservation
property (1.58), which requires only that u ∈ L2(R2).

1.3.5 Lax pair representation

Given a differential equation in evolutionary form:

ut = F (u), (1.66)

it is sometimes possible to find two operators L,M such that the original Equation (1.66) is
equivalent to the “Lax pair” representation:

Lt = [L,M], (1.67)
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where [A,B] := AB − BA is the commutator of A and B. This representation was the
starting point for the discovery of the Inverse Scattering Transform and of the infinitely many
conserved quantities for the KdV Equation. A simple way to point out the importance of
the representation (1.67) is by considering a finite dimensional analogue, where L is a time-
dependent, diagonisable matrix whose spectrum does not depend on time. If L is decomposed
canonically as:

L(t) = S−1(t)ΛS(t), (1.68)

where Λ = diag(λ1, . . . , λn) is the matrix with the eigenvalues of L, which do not depend on
time, then it is possible to show that the time derivative of L verifies a relation in the form
of (1.67), for an appropriate choice of M. To see this, it is convenient to compute explicitly
the time derivative of Equation (1.68):

Lt = S−1t ΛS + S−1ΛSt. (1.69)

An explicit expression for S−1t can be obtained by differentiating the identity S−1S = I:

S−1t = −S−1StS
−1. (1.70)

Replacing the expression just found (1.70) into Equation (1.69), it follows that:

Lt = −S−1StS
−1ΛS + S−1ΛSt (1.71)

= −S−1StS
−1ΛS + S−1ΛSS−1St (1.72)

= −ML + LM (1.73)
= [L,M], (1.74)

with M = S−1St. There are at least two reasons for which the Lax pair form is of great
practical importance. The first one is that if a Lax pair can be found, then the eigenvalues of
L:

Lψm = λmψm for m = 1, . . . , n (1.75)

are constants of the motion, d
dtλm = 0. The second is that the time evolution equation for

the eigenfunctions ψm:
ψm,t = Mψm (1.76)

is linear (but note that M depends on time).
The Lax pair representation for the KP Equation was derived in [38], and has the form:

Lt =
√
α[L,M], (1.77)

with operators:

L = ε2∂xx −
√
α√
3
∂y +

1

6
u (1.78)

M = −∂xxx −
1

4
u∂x −

1

6
√

3
∂−1x uy. (1.79)

It is important to reckon that the operator multiplications in the commutator of the Lax pair
are understood in the sense of Ordinary Differential Operators. As an example, the product
between the first term of L and the second term of M in Equation (1.79) is:

6∂xx (−iu∂x) = −6i (uxx∂x + 2ux∂xx + u∂xxx) . (1.80)

An equivalent interpretation for the Lax pair is as a compatibility condition for a set of two
linear equations. To see this, let us define the operator L̃ as:

L̃ = ε2∂xx +
1

6
u, (1.81)
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and consider the two linear equations:
√
α√
3

∂

∂y
ψ = L̃ψ (1.82)

1

4

∂

∂t
ψ = Mψ. (1.83)

The flow of the two equations (1.83) commutes if:

ψyt = ψty, (1.84)

which in turn implies the following commutativity relation for the Lax operators:[√
α√
3

∂

∂y
− L̃,

1

4

∂

∂t
−M

]
= 0, (1.85)

which is equivalent to (1.77).

1.3.6 Hirota Bilinear Form

Hirota [63] has shown a remarkable way of constructing exact solutions for several equations,
among which the KP Equation, that is particularly useful for the description of line solitons
interactions in the KPII Equation. The main component of Hirota’s method is a set of
“nicely weighted functions” (this is the terminology used in [78]). A nicely weighted function
τ = τ(x, y, t) is any function that verifies the relations:

τt = τxxx and τxx = τy. (1.86)

Hirota proved that if τ is a nicely weighted function, then

u = 12∂xx log τ (1.87)

is a solution of the KP Equation. This can be seen by replacing the expression (1.87) in the
original form of the KP Equation (1.17):

∂xt∂xx log τ + 12∂x (∂xx log τ ∂x∂xx log τ) + ∂xxxx∂xx log τ + α∂yy∂xx log τ, (1.88)

which is equivalent to:

∂xt log τ + 12

(
1

2

τ4x
τ4
− τ2xτxx

τ3
+

1

2

τ2xx
τ2

)
+ ∂xxxx log τ + α∂yy log τ = 0, (1.89)

since:

∂x (∂xx log τ ∂xxx log τ) = ∂xx

(
1

2

τ4x
τ4
− τ2xτxx

τ3
+

1

2

τ2xx
τ2

)
. (1.90)

After some straightforward computations, it is possible to obtain the following bilinear equa-
tion for τ :

ττxt − τxτt + 3τ2xx − 4τxτxxx + ττxxxx + α
(
ττyy − τ2y

)
= 0, (1.91)

where two integration constants have been set to zero. It can be checked that if τ is a nicely
weighted function, then it is a solution of the bilinear Equation (1.91).

Moreover, any number of tau functions can be combined to produce a new solution of the
KP Equation, via the “nonlinear superposition”:

τnew = Wr(τ1, . . . , τn) = det


τ1 τ2 . . . τn
∂xτ1 ∂xτ2 . . . ∂xτn
...

...
. . .

...
∂n−1x τ1 ∂n−1x τ2 . . . ∂n−1x τn

 . (1.92)
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Hirota rewrote Equation (1.91) in a simpler way by introducing the Hirota derivative operator
D:

Dn
x(f · g) = (∂x − ∂x′)n f(x)g(x′)

∣∣∣
x′=x

, (1.93)

and similarly for the other variables. Noting that:

Dx Dy(τ · τ) = 2 (ττxt − τxτt) (1.94)

D4
x(τ · τ) = 2

(
3τ2xx − 4τxτxxx + ττxxxx

)
(1.95)

D2
y(τ · τ) = 2

(
ττyy − τ2y

)
, (1.96)

then Equation (1.91) can be rewritten in the equivalent, but simpler looking form:(
Dt Dx + D4

x + αD2
y

)
(τ · τ) = 0. (1.97)

Hirota’s bilinear operator enjoys some remarkable properties that considerably simplify the
solution process for the Bilinear Equation. A typical application of the Hirota bilinear Equa-
tion is to find multi-soliton solutions to any equation (not necessarily integrable) which admits
solitonic solutions. For an example of this approach to multisolitonic solutions of the KdV
Equation see [36, Ch. 5].

1.3.7 Exact solutions

A typical feature of integrability is the possibility of exhibiting many exact solutions. The
KPI Equation is no exception, and in this section we recall a few exact solutions, some of
which will be useful in the following.

Line solitons

As discussed in Section 1.3.1, any solution of the KdV Equation that does not depend on
y is also a solution of the KP Equation. A landmark solution of the KdV Equation is the
nonlinear traveling wave solution, that consists in a localised perturbation that propagates
without dispersing. By seeking for a traveling wave solution of the KdV Equation, namely a
solution in the form:

u(x, t) = aF (bx+ ct) (1.98)

after some computations which are recalled in a more general setting in Section 2.2, gives the
soliton solution:

u(x, t) = a sech2

( √
a

2
√

3
x− a3/2

6
√

3
t

)
, (1.99)

which describes a right-moving positive soliton. Extending this approach to the KP Equation,
with a slightly more general traveling wave ansatz:

u(x, y, t) = aF (bx+ ly + ct), (1.100)

yields to:

u(x, y, t) = a sech2

( √
a

2
√

3
x+ ly − a2 + 36αl2

6
√

3a
t

)
. (1.101)

Equation (1.101) is the expression of the line soliton for the KP Equation. We remark that
Equation (1.101) can be obtained by applying the rotational transformation described in
Section 1.3.4 to the “straight” soliton of Equation (1.99). From this equation, it is clear that
the direction of propagation of the line soliton can be chosen freely by specifying l, however the
speed of the soliton depends on the direction of propagation. For the KPI Equation (α = −1),
the more the direction of propagation aligns with x (l → 0), the faster the soliton’s speed.
The converse statement holds for the KPII Equation (α = 1). Solitons are well known for
interacting in a way that preserves their shape and speed, affecting only their phase. Moreover,
a generic localised initial datum will evolve in a certain number of solitons traveling to the
right with different amplitudes (and thus speeds), plus some low-amplitude radiation traveling
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to the left. This behaviour was discovered in [118], and a similar result exists for line solitons
in the KPII Equation [86]. As a matter of fact, both the KPI and the KPII Equations have
multisoliton solutions that are not decaying at infinity for some direction in the (x, y) plane.

In [83], it is shown numerically that the line soliton in the KPI Equation is unstable with
respect to transverse perturbations: for sufficiently long times there is a wave breaking leading
to the formation of lump solutions. The instability observed numerically in [69, 70, 83] mimics
the exact solution given in [107] in terms of tau functions. Other instability results for line
solitons in the KPI Equation are shown in [13] and [122], where a focusing behaviour is shown
in dimension 2 and 3, and in a more general water wave context in [110].

Lumps

Lump solutions were obtained first in [3], and further investigated in [112] and [98], where
also the interaction between lumps is studied. Lumps are localised peaks which propagate
conserving their shape, for this reason they are often called “two-dimensional solitons”, and
exist only for the KPI Equation. The KPII Equation does not seem to admit two-dimensional,
localised, soliton solutions. The KPI Equation admits an infinite number of rational, two-
dimensional soliton solutions. The simplest lump solution is a ratio between two polynomials
in x, y, t of degree 2 and 4:

u(x, y, t) = 24
−
(
x+ ay + (a2 − 3b2)t

)2
+ 3b2 (y + 2at)2 + 1

b2(
(x+ ay + (a2 − 3b2)t)2 + 3b2 (y + 2at)2 + 1

b2

)2 , (1.102)

with a and b arbitrary constants. A wireframe plot of this solitonic solution is shown in
Figure 1.4 (left), where the localised nature of the lump is clearly visible. It is simple to check
that the location of the maximum of a lump solution has coordinates:

x = (a2 + 3b2)t y = −2at. (1.103)

A possible way of deriving lump solutions is by considering a traveling wave polynomial ansatz
for the tau function:

τ(x, y, t) = a0(x+ ct)2 + a1y
2 + a2. (1.104)

Inserting the ansatz (1.104) in the Hirota Equation (1.91) with α = −1 gives:

12a20 − 2a1a2 + 2a0a2c− 2a0c
2 (a1 + c) t2 − 4a0c (a1 + a0c) tx

−2a0 (a1 + a0c)x
2 + 2a1 (a1 + a0c) y

2 = 0,
(1.105)

which in turn introduces the following constraints for a0, a1, a2, c:
6a20 − a1a2 + a0a2c = 0

a1 + c = 0

a1 + a0c = 0.

(1.106)

Taking a2 as a free variable, system (1.106) gives:

a0 = 1 a1 =
3

a2
c = − 3

a2
. (1.107)

Renaming a2 = 1
b2

gives the following expression for the tau function:

τ(x, y, t) = (x− 3b2t)2 + 3b2y2 +
1

b2
, (1.108)

which in turn leads to the lowest order lump solution for u:

u(x, y, t) = 12∂xx log τ(x, y, t) = 24
−(x− 3b2t)2 + 3b2y2 + 1

b2(
(x− 3b2t)2 + 3b2y2 + 1

b2

)2 . (1.109)
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This is just a special case with a = 0 of the general lump solution of degree 2, Equation (1.102).

Zaitsev’s solution

A traveling wave solution which represents a sort of hybrid between line solitons and lumps
was discovered by Zaitsev in [119]. The expression of Zaitsev’s solution is:

u(ξ, y) = 2α2 1− β cosh(αξ) cos δy

(coshαξ − β cos δy)2
, (1.110)

with

ξ = x− ct c = α2 4− β2
1− β2 δ = α2

√
3

1− β2 . (1.111)

As for the line soliton, the solution consists of an unbounded wavefront along a ray parallel
to the y axis, rapidly decreasing along the direction orthogonal to the wavefront. The wave
profile however changes along y in a periodic fashion, forming an ordered chain of lump-like
crests. A visualisation of Zaitsev’s solution is available in Figure 1.4 (right).

Figure 1.4: Wireframe plots of the lump solution (left) of Equation (1.102)
with parameters a = 0, b = 1, and of Zaitsev’s solution (right) of Equa-

tion (1.110) with parameters α = 1, β = 1/2.

Theta functions

The algebro-geometric method for the production of exact solutions to integrable equations
was shown first by Krichever in [89, 88], and for an introductory treatment we refer also to [40,
43].

Given a polynomial f in two variables z, w ∈ C with complex coefficients, consider the
algebraic curve of the form:

Γ = {(z, w) ∈ C2 : f(z, w) = 0}. (1.112)

The algebraic curve Γ is a one-complex dimensional analytic manifold, and as such a Riemann
Surface. In the following, we will suppose that the Riemann Surface Γ has genus g. Let ai
and bi, for i = 1, . . . , g be a basis for the homology cycles of Γ (see Figure 1.5), and let ωi be
a basis for the holomorphic differentials (or differentials of the first kind) on Γ.

When Γ is a elliptic or hyperelliptic Riemann Surface,

f(z, w) = w2 − P2g+1(z), (1.113)

with P2g+1(z) a polynomial of degree 2g+1 in the z variable only, the holomorphic differentials
have a particularly simple form in local coordinates:

ωi =
zi−1

w
dz =

zi−1√
P2g+1(z)

dz for i = 1, . . . , g. (1.114)
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a2

a−12

a1

a−11

b2

b−12b1

b−11

Figure 1.5: Basis cycles for the homology of a torus with genus 2.

We assume that the holomorphic differentials are normalised as:
˛
ai

ωj = δij . (1.115)

Let us denote with A and B the matrices defined as:

Aij =

˛
ai

ωj Bij =

˛
bi

ωj , (1.116)

where Bij is called the period matrix of Γ. This matrix has many important properties,
notably is symmetric with negative definite real part (see e.g. [43] for a proof).

We now define the theta function associated to Γ by the following Fourier series:

ϑ : Cg → C ϑ(z|B) =
∑
k∈Zg

exp(2πi(
1

2
kTBk + kTz)), (1.117)

which has the following periodicity property:

ϑ(z + k +Bm|B) = exp(−2πi(
1

2
mTBm + mTz))ϑ(z|B), ∀k, m, z ∈ Zg. (1.118)

Theta functions on Riemann Surfaces can be used to give explicit solutions to the KP Equation
as follows:

u(x, y, t) = c+ 2∂xx log ϑ(kx+ ly + ωt|B), (1.119)

where c is an arbitrary constant, and k, l, ω can be reconstructed from the periods of the
holomorphic differentials. In Equation (1.119), the wave speed ω should not be confused with
the basis elements for the holomorphic differentials. We refer e.g. to [43, § 3.2] for the details
on this construction.

Connection with Painlevé II

A class of self-similar solutions can be found [36] by imposing the ansatz:

u(x, y, t) = tnF (ξ) ξ = xtp + λy2tq. (1.120)

Replacing the ansatz (1.120) in the KP Equation leads to the expression:[
(n+ p)tp + 2αλtq+1

]
Fξ + tn+2p+1F 2

ξ +
[
pt2px+ qλy2tp+q

]
FFξξ

+4αλ2y2t2q+1FFξξ + tn+2p+1FFξξ + t4p+1Fξξξξ = 0.
(1.121)

For a similarity solution, all the terms in Equation (1.121) must scale equally with time,
leading to the relations between the exponents:

p = q + 1 = n+ 2p+ 1 = 4p+ 1, (1.122)
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with solution:

n = −2

3
p = −1

3
q = −4

3
. (1.123)

With the exponents known, Equation (1.121) takes the form:

(2αλ− 1)Fξ + F 2
ξ +

(
−1

3
ξ − λy2t−4/3

)
Fξξ + 4αλ2y2t−4/3Fξξ + FFξξ + Fξξξξ = 0. (1.124)

In Equation (1.124), the requirement that all the terms scale equally with respect to time
leads to the following equation for λ:

4αλ2 − λ = 0, (1.125)

with solution λ = 1
4α . Replacing this value of λ in Equation (1.124) gives:

Fξξξξ + FFξξ + F 2
ξ −

1

3
ξFξξ −

1

2
Fξ = 0. (1.126)

Equation (1.126) can be immediately integrated to:

Fξξξ + FFξ −
1

3
(ξFξ − F )− 1

2
F +A = 0, (1.127)

where A is an arbitrary constant that can be set to zero with the condition that F, Fξ, · · · → 0
as |ξ| → ∞. Multiplying Equation (1.127) by the integrating factor F and integrating leads
to:

FFξξ −
1

2
F 2
ξ +

1

3
F 3 − 1

6
ξF 2 +B = 0, (1.128)

where B is an arbitrary constant that can be set to zero by the same decreasing conditions
for F and its derivatives that were imposed for the first integration constant, A. With the
substitution F = V 2, Equation (1.128) becomes:

Vξξ −
1

12
ξV +

1

6
V 3 = 0, (1.129)

which is the Painlevé II Equation. Since Equation (1.129) does not depend on α, it follows
that solutions in terms of the Painlevé II transcendent exist for both the KPI and KPII
Equations.

1.3.8 Well posedness

For a review of well-posedness and regularity results for the KP and generalised KP Equations,
see [83]. Here we limit ourselves to sketching the relevant well-posedness results for the KPI
and KPII Equations on the two-dimensional torus T2, providing references to the appropriate
literature for the details.

The global well-posedness of the KPII Equation was proved in [22] for initial data in
Hs(T2) for any s ≥ 0 (which includes, in particular, L2(T2)). Bourgain’s proof consists in
setting up the following Picard fixed point iteration:(

∂t + ∂xxx + α∂−1x ∂yy
)
u(1) = 0 u(1)(x, y, 0) = u0(x, y) (1.130)(

∂t + ∂xxx + α∂−1x ∂yy
)
u(k+1) = −∂x

(
u(k)

)2
u(k+1)(x, y, 0) = u0(x, y), (1.131)

which is based on a linear-nonlinear splitting, and takes advantage of the fact that the linear
problems in (1.131) can be solved explicitly by Fourier series. Introducing an appropriate
norm, it is possible to to prove the existence of a local solution to the iterative scheme (1.131)
by means of Banach–Caccioppoli’s contraction theorem. The fixed point method guarantees
only local well posedness (i.e. for small times), nevertheless a global result can be obtained
by repeatedly applying the contraction principle, which ensures the existence of a sequence
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of local solutions, defined on a relative sequence of overlapping time intervals. The conser-
vation of the L2 norm ensures the existence of a lower bound on the length of the successive
intervals, thus the sequence of local solutions can be extended to arbitrary times. In the same
paper [22], Bourgain extended the global well-posedness proof for the KPII Equation to the
whole R2. Bourgain’s proof cannot be adapted to the KPI Equation. Instead, in [72] global
well posedness in T2 is shown under the hypothesis that the initial data lies in the space:

Z2(T2) := {u : ‖u‖Z2 <∞ and û(0, l) = 0 ∀ l ∈ Z \ {0}}, (1.132)

with norm:
‖u‖Z2 := ‖û(j, l)

(
1 + |j|2 + |l/j|2

)
‖`2(Z2). (1.133)

In addition, the authors of [72] also show that such solution is in C(R, Z2(T2))∩C1(R, H−1(T2)).
Global well posedness of the KPI Equation in R2 is proved in [102] for initial data in the
Sobolev space with norm:

‖u‖Z = ‖u‖L2 + ‖uxxx‖L2 + ‖uy‖L2 + ‖uxy‖L2 + ‖∂−1x uy‖L2 + ‖∂−2x uyy‖L2 , (1.134)

and in [72] for initial data in the Sobolev space defined by the energy norm:

‖u‖2E1 = ‖u‖2L2 + ‖ux‖2L2 + ‖∂−1x uy‖2L2 . (1.135)
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Chapter 2

Modulation Equations for the KP
Equation

Whitham modulation theory is a powerful framework for the analytical description of wave
propagation in dispersive PDEs.

This topic, first introduced by Whitham in [117] for the KdV Equation, has found wide
application in the description of wave modulation in the NLS Equation [50, 105], Camassa–
Holm Equation [2, 1]. For an introduction to Whitham modulation theory, the most valuable
source is still the book by Whitham [116], and some more recent review works are [76, 59,
46].

2.1 Whitham Modulation Theory

Whitham’s Averaging Method is an asymptotic technique suitable for the asymptotic descrip-
tion of modulated traveling waves. Here the term modulation refers to the fact that some
relevant wave parameters (amplitude, speed, direction of propagation) of a certain carrier
wave change slowly in space or in time. There is no rigorous definition of how slow a mod-
ulated wave must be, and sometimes Whitham’s method gives good results even when the
modulation takes place in just a couple of wavelengths.

Whitham’s modulation theory unfolds in two steps:

1. the search for an exact traveling wave solution to the original equation;

2. the asymptotic description of wave parameters’ modulation by finding their evolution
equations;

followed, if possible, by the solution of the modulation equations.
The second step can be greatly simplified if the original equation can be expressed in

Lagrangian form. More precisely, if the original equation is the Euler–Lagrange equation for
some Lagrangian, then the modulation equations too will be the Euler–Lagrange equations for
some other Lagrangian functional. The Lagrangian for the modulated parameters is related
to the original Lagrangian by a clever averaging procedure.

The search for a traveling wave solution is in principle quite straightforward. For a PDE
in one space dimension, the typical form of a traveling wave is:

η(x, t) = af(kx− ωt), (2.1)

for some unknown periodic function f . This ansatz is then plugged in the original equation,
and apart from technical difficulties an explicit (or sometimes implicit, as in the Camassa–
Holm Equation [1]) form for f can be obtained.

Whitham’s approach stems from the observation that the functional form (2.1) can be a
good approximation to other classes of solutions to the original equation, not expressible in
the form (2.1), provided that the parameters a, k, ω change slowly with space and time. This
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latter requirement can be formalized by introducing a “fast” variable1:

θ =
1

ε
(kx− ωt) (2.2)

and considering the following formal ansatz:

η(θ, x, t) = a(x, t)f(θ), θ =
1

ε
(k(x, t)x− ω(x, t)t) . (2.3)

Computing the Lagrangian for the ansatz (2.3) leads to an expression of the form:

L(θ, x, t) = F (η, ηaax, ηaat, ηkkx, ηkky, . . . ,
1

ε
ηθ, . . . ) (2.4)

where F denotes some functional dependence, which in general depends both on the fast and
the slow variables. It is worth noting that, as a consequence of the functional form of the
ansatz for η, the derivatives with respect to the fast variables are of order O(1/ε), while the
derivatives with respect to the slow variables are of order O(1). Indeed:

dη

dx
= ηx +

1

ε
ηθθx. (2.5)

As a result, in the limit ε → 0, the derivatives with respect to the slow variables can be
neglected when computing the Lagrangian.

Since the parameters a, k, ω depend only on the slow variables, it would be interesting to
derive a Lagrangian which depends only on the slow variables, so that the Euler–Lagrange
equations for such Lagrangian would provide the modulation equations for the parameters.
This was achieved by Whitham by introducing an averaged Lagrangian:

L =
1

2π

ˆ 2π

0
Ldθ, (2.6)

where the integral extends over a period that is supposed to be 2π in Equation (2.6).
The least action principle is then imposed on the averaged Lagrangian:

δ

ˆ
Ldt = 0. (2.7)

Variations with respect to the amplitude are computed as:

δa : La :=
∂L

∂a
= 0, (2.8)

where the subscript notation is used to denote partial differentiation. Equation (2.8) results in
an algebraic constraint for the parameters called dispersion relation. Variations with respect
to the phase give:

δθ :
∂

∂t
Lω −

∂

∂x
Lk = 0, (2.9)

which provides the evolutionary PDE for the parameters. The modulation equations (2.8), (2.9)
form a system of conservation laws, regardless of the nature of the initial equation for u.

2.2 Traveling wave solutions for the KP Equation

In this section, the first step in the theory of modulations sketched in Section 2.1, namely
the search for traveling wave solutions, is pursued specifically for the KP Equation. However,
instead of seeking directly for a traveling wave solution to the original form of the KP Equation,

1with the expression “fast variable”, we stress the fact that since ε � 1, even if the original (or “slow”)
variables x, t change slowly, θ changes rapidly.
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for the Lagrangian averaging procedure it is convenient to seek for traveling wave solutions
of the Potential Equation (1.43).

The most general form for a traveling wave potential is:

ϕ = ψ + φ(θ), (2.10)

with ψ and θ in the form:

ψ = β1x+ β2y − γt θ =
1

ε
(kx+ ly − ωt) , (2.11)

and φ is a periodic function of period 2π. The term ψ is required to allow for modulations of
the average value of u, and in the following it will be clear that the original wave parameters
a, k, l, ω depend on ψ for their modulation. The traveling wave potential (2.11) gives origin
to a traveling wave solution u = η(θ) by:

η(θ) = εϕx = β1 + kφθ. (2.12)

From Equation (2.12) it follows that

φθ =
1

k
(η − β1) , (2.13)

which in turn gives the relations:

εϕy = β2 +
l

k
(η − β1) εϕt = −γ − ω

k
(η − β1) (2.14)

ε2ϕxx = k2φθθ = kηθ ε2ϕxt = −ωηθ (2.15)

ε2ϕyy =
l2

k
ηθ ε4ϕxxxx = k3ηθθθ, (2.16)

that will prove useful in the following. Imposing that ϕ solves the KP Equation for the
potential:

ϕxt + εϕxϕxx + ε2ϕxxxx + αϕyy = 0, (2.17)

yields:

− ωηθ + kηηθ + k3ηθθθ + α
l2

k
ηθ = 0. (2.18)

This equation can be integrated immediately to:

k2ηθθ = −1

2
η2 +

(
ω

k
− α l

2

k2

)
η +

A

6
, (2.19)

with A an integration constant. Multiplying Equation (2.19) by the integrating factor ηθ and
integrating gives:

3k2η2θ = −η3 + V η2 +Aη +B, (2.20)

with

V = 3

(
ω

k
− α l

2

k2

)
, (2.21)

and B an arbitrary integration constant. It is interesting to note that the Equation (2.20) for
the traveling wave does not depend on ε. Clearly, Equation (2.20) has a real solution only if
η is on a positive branch of the cubic on the right hand side. Supposing that the cubic has
three roots e1, e2, e3, ordered as e1 > e2 > e3 (see Figure 2.1), then a traveling wave solution
exists for e2 ≤ η ≤ e1. In this case, the right hand side of Equation (2.20) can be written as:

− η3 + V η2 +Aη +B = −(η − e1)(η − e2)(η − e3), (2.22)
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so that:
e1 + e2 + e3 = V

e1e2 + e2e3 + e3e1 = −A
e1e2e3 = B,

(2.23)

which makes clear the fact that the roots e1, e2, e3 contain the same information as V,A,B.

0 1 2 3
−1

0

1

2

e1e2e3

η

−
η
3

+
V
η
2

+
A
η

+
B

1 2 3
−1

0

1

2

e1
e3 ≡ e2

η
0 1 2 3

−1

0

1

2

e2 ≡ e1e3

η

Figure 2.1: Cubics at the right hand side of Equation (2.20) allowing for
traveling wave solutions. Only three cases are possible: e1 > e2 > e3 (left),

e1 > e2 ≡ e3 (center), e1 ≡ e2 > e3 (right).
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Figure 2.2: Parametric plot of η and ηθ for the case e3 < e2 < e1 (left) and
the corresponding traveling wave solution η(θ) (right). This corresponds to
the picture on the left of Figure 2.1. The shaded area is proportional to the

variable W defined in Equation (2.43).

Provided that e2 ≤ η ≤ e1, Equation (2.20) can be rewritten formally as:

√
3k

dη√
−(η − e1)(η − e2)(η − e3)

= dθ. (2.24)

Equation (2.24) can be integrated over a period to:

2
√

3k

ˆ e1

e2

dη√
−(η − e1)(η − e2)(η − e3)

=

˛
dθ = 2π. (2.25)

The integral on the left hand side of Equation (2.25) can be expressed as:
ˆ e1

e2

dη√
−(η − e1)(η − e2)(η − e3)

= 2
K(m)√
e1 − e2

m =
e1 − e2
e1 − e3

, (2.26)

where K(m) is the complete elliptic integral of the first kind, and m is the parameter of the
elliptic integral. Combining Equation (2.26) with Equation (2.25) gives an expression for the
wave number k in terms of the roots e1, e2, e3:

k =
π

2
√

3

√
e1 − e3
K(m)

. (2.27)
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Figure 2.3: Parametric plot of η and ηθ for the solitonic case e3 ≡ e2 (left)
and the corresponding traveling wave solution η(θ) (right). This corresponds
to the central picture of Figure 2.1. The shaded area is proportional to the

variable W defined in Equation (2.43).
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Figure 2.4: Parametric plot of η and ηθ for the small amplitude case e3 6=
e2 → e1 (left) and the corresponding periodic wave solution η(θ) (right). In
this limit, η and ηθ parametrize a circle. The plot is made by taking e1 = 2.8,
e2 = 2.75, e3 = 0.25. This case corresponds to the picture on the right of
Figure 2.1. The shaded area is proportional to the variable W defined in

Equation (2.43).
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The details for the integration in Equation (2.26) can be found e.g. in [11, p. 597].
An implicit expression for the the traveling wave η is found after integrating Equa-

tion (2.25) over a generic interval e2 ≤ η ≤ e1 as follows:

√
3k

ˆ η

e2

dη√
−(η − e1)(η − e2)(η − e3)

= 2π. (2.28)

The integral on the left hand side can be expressed as:
ˆ η

e2

dη√
−(η − e1)(η − e2)(η − e3)

=
2√

e1 − e2

[
F

(
arcsin

(√
e1 − e2
e1 − η

)
|m
)
−K(m)

]
,

(2.29)
where F is the incomplete elliptic integral of the first kind, defined as:

F(φ|m) =

ˆ φ

0

dθ√
1−m sin2 θ

. (2.30)

It may be useful to recall the following relation between complete and incomplete elliptic
integrals of the first kind:

K(m) = F
(π

2
|m
)
. (2.31)

An explicit expression for η can be derived from Equation (2.29) via inverse functions:

η(θ) = e2 + (e1 − e2) cn2

(
θ

π
−K(m)|m

)
(2.32)

η(x, y, t) = e2 + (e1 − e2) cn2

(√
e1 − e3
2
√

3ε

(
x+

l

k
y − ω

k
t

)
−K(m)|m

)
, (2.33)

where cn denotes the Jacobi elliptic function:

cn(u|m) = cosφ where u =

ˆ φ

0

dθ√
1−m sin2 θ

. (2.34)

The theory of elliptic transcendents is classical, for details on the derivation see e.g. [91]
or [100].

Equation (2.33) is the most general form of a traveling wave solution for the KP Equation.
The functional form is the same for the KPI and the KPII Equations, but amplitude, speed
and propagation direction of the wave differ for the two equations, since the roots e1, e2, e3 as
well as the wave parameters k, l, ω depend on V , which in turn depends on α.

Some special forms of the traveling wave are worth mentioning.

Constant solution If e1 → e2, clearly η = e2 and the solution is constant for all times.

Small amplitude wave If m → 0, it is possible to apply the following expansion for the
elliptic integrals:

K(m) =
π

2

(
1 +

m

4
+

9

64
m2

)
+O(m3)

cn(x|m) = cosx+

(
x

4
sinx− 1

8
sinx sin 2x

)
m+O(m2),

(2.35)

which lead to the periodic solution:

η(θ) = e2 + (e1 − e2) sin2

(√
e1 − e3
2
√

3ε

(
x+

l

k
y − ω

k
t

))
. (2.36)

A representation of this solution can be seen in Figure 2.4.
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Soliton If e3 → e2, such that m→ 1, the following asymptotic holds:

lim
m→1

cn(x|m) = sechx, (2.37)

so that the solution is the line soliton:

η(x, y, t) = e2 + (e1 − e2) sech2

(√
e1 − e2
2
√

3ε

(
x+

l

k
y − ω

k
t

))
. (2.38)

A plot of the soliton solution is available in Figure 2.3.

2.2.1 Lagrangian averaging for the KP traveling waves

Following Whitham’s seminal work for the KdV Equation [116], it is possible to derive a
system of PDEs which rules the modulation of the traveling waves solutions. A remarkable
property of the Lagrangian averaging method is that the explicit knowledge of a traveling
wave solution is not necessary. This fact was achieved by Whitham through a clever choice
of the modulation variables.

The original form of the traveling wave potential is:

ϕ(x, y, t) = β1x+ β2y − γt+ φ(θ) θ =
1

ε
(kx+ ly − ωt) , (2.39)

and the Lagrangian density for the KP Equation, expressed in terms of the potential is:

L = ε2ϕtϕx +
ε3

3
ϕ3
x − ε4ϕ2

xx + ε2αϕ2
y. (2.40)

By applying the relations (2.14), (2.15), (2.16), the Lagrangian can be rewritten in terms of
η and ηθ as:

L = −
(
γ +

ω

k
(η − β1)

)
η +

1

3
η3 − k2η2θ + α

(
β2 +

l

k
(η − β1)

)2

= −k2η2θ +
1

3
η3 +

(
α
l2

k2
− ω

k

)
η2 +

(
2α

(
β2 −

l

k
β1

)
l

k
+ β1

ω

k
− γ
)
η + α

(
β2 −

l

k
β1

)2

.

(2.41)
With the help of Equation (2.20), it is possible to simplify the Lagrangian (2.41) to:

L = −2k2η2θ +

(
B

3
− γ + β1

ω

k
+ 2α

l

k

(
β2 −

l

k
β1

))
η + α

(
β2 −

l

k
β1

)2

+
A

3
. (2.42)

Note that this simplification does not require an explicit knowledge of the traveling wave
solution, although clearly some information is implicitly present in Equation (2.20).

It is convenient to introduce the following quantity:

W (A,B, V ) =
1

2π

ˆ 2π

0
kη2θ dθ

=

√
3

2π

˛
η2θ√

−η3 + V η2 +Aη +B
dη

=
k√
3π

ˆ e1

e2

√
−η3 + V η2 +Aη +B dη.

(2.43)

Note that in the last line of Equation (2.43), the dependence of W on A,B, V is hidden also
in the integral limits e2, e1. An interpretation on the meaning of W can be inferred from the
third equation of (2.43). Indeed, by interpreting η as a generalized coordinate q, and ηθ as a
generalized momentum p, then W has the form:

W '
˛
p dq, (2.44)
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which is the classical definition of an action in Hamiltonian Mechanics. For a visual interpreta-
tion of W , see the caption in Figures 2.2, 2.3 and 2.4. For computing the average Lagrangian,
only the following integrals are needed:

〈η〉 :=
1

2π

ˆ 2π

0
η dθ = β1

〈η2θ〉 :=
1

2π

ˆ 2π

0
η2θ dθ =

W

k
,

(2.45)

which lead to the following averaged Lagrangian:

L =
1

2π

ˆ 2π

0
Ldθ = −2kW +

A

3
+

1

3
Bβ1 − γβ2 +

1

3
V β21 + αβ22 . (2.46)

Since the averaging is performed over the fast variable θ, the resulting Lagrangian L depends
only on the slow variables x, y, t. The variational principle for the averaged Lagrangian is:

δ

¨
L(β1, β2, γ, k, l, ω,A,B) dtdx dy, (2.47)

where the dependence of the Lagrangian on V is missing since V is a function of k, l, ω, as
in Equation (2.21). Note that the dependence of L on β1, β2, γ is due to the slow variable ψ,
while the dependence of L on k, l, ω is due to the fast variable θ.

Taking variations with respect to the two parameters A and B gives the algebraic con-
straints:

δA : LA = 0 δB : LB = 0, (2.48)

δA : kWA =
1

6
δB : kWB =

β1
6
. (2.49)

The two equations (2.49) can be combined to give the interesting expression for β1:

β1 =
WB

WA
. (2.50)

It is interesting to note that such relations, together with the definition of V , give the disper-
sion relation:

ω =
1

3
kV + α

l2

k
. (2.51)

The dispersion relation is an important equation, since it predicts the speed of the wave as
function of its amplitude2 and propagation direction. The dependence of the wave speed on the
amplitude is a typical nonlinear effect, while the dependence on the direction of propagation
follows from the hypothesis of slow dependence of the solution on the y coordinate made by
Kadomtsev and Petviashvili.

Variations with respect to V are not relevant to the dynamics since these are equivalent
to variations with respect to θ. However, it is interesting to report the relation:

δV : LV = 0
β21
6

= kWV . (2.52)

Variations with respect to the angles ψ and θ give the equations of motion:

δψ :
∂

∂t
Lγ −

∂

∂x
Lβ1 −

∂

∂y
Lβ2 = 0 (2.53)

δθ :
∂

∂t
Lω −

∂

∂x
Lk −

∂

∂y
Ll = 0. (2.54)

2The dependence on the amplitude of the wave is due to V . Indeed, the amplitude is given by a = e1− e2,
and V depends on e1 and e2 via Equation (2.23).
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The variational equations are complemented with the compatibility relations:

θxt = θtx ψxt = ψtx (2.55)
θyt = θty ψyt = ψty (2.56)
θxy = θyx ψxy = ψyx, (2.57)

which are equivalent to the following wave equations:

kt + ωx = 0 β1,t + γx = 0 (2.58)
lt + ωy = 0 β2,t + γy = 0 (2.59)
lx − ky = 0 β2,x − β1,y = 0. (2.60)

It is worth noting that Equation (2.60) is not completely independent from the first two.
Indeed, by deriving Equation (2.58) by y and Equation (2.59) by x, it is found that:

ωxy = −kty γxy = −β1,ty (2.61)
ωyx = −ltx γyx = −β2,tx, (2.62)

which are equivalent to:

kty = ltx β1,ty = β2,tx. (2.63)

Deriving Equation (2.60) with respect to t, it is clear that the resulting equations are the
same as those of Equation (2.63).

Summarising, there are six evolutionary equations for the parameters (two from Equa-
tions (2.53) (2.54) and four out of the six Equations (2.58), (2.59), (2.60)), and two con-
straints (2.49), for the 8 modulation parameters k, l, ω, β1, β2, γ, A,B. Consequently, the
modulation system is determined.

The eight equations (2.49), (2.53), (2.54), (2.55), (2.56), (2.57) and (2.58), (2.59), (2.60),
although correct, are not very much prone to analysis, hence it is preferrable to rearrange these
in a form more amenable to formal manipulations. Writing down explicitly the variation with
respect to ψ leads to:

(β1)t +

(
1

3
B − γ +

2

3
V β1

)
x

+ (2αβ2)y = 0

(2β1)t +
1

3
Bx + (4kVWB)x + 2αβ2,y = 0

(6kWB)t +
1

3
kWABx +

(
1

3
kVWB

)
x

+ αβ2,y = 0,

(2.64)

which, after some rearranging becomes:

WBt +

(
1

3
kV

)
WBx +

1

6
BxWA +

(
kt
k

+ 3

(
ω

k
− α l

2

k2

)
kx
k

+

(
ω

k
− α l

2

k2

)
x

)
WB +αβ2,y = 0.

(2.65)
Introducing the new auxiliary variables:

p := β2 − qβ1 q :=
l

k
(2.66)

and the “convective” derivative:
D :=

∂

∂y
− q ∂

∂x
(2.67)

simplifies Equation (2.65) to:

WBt +

(
V

3
+ αq2

)
WBx +

1

6
WABx + α (WVDq + 2qDWB +WADp) = 0. (2.68)
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It is convenient to express the dispersion relation in the new variables as:

ω =
1

6

(
1

3

V

WA
+ α

q2

WA

)
. (2.69)

The variation with respect to θ gives:(
6WV +

β21
k

)
t

+

(
ω − 2αlq

k2
(
6kWV − β21

)
− 2W

)
x

+ 2α

(
q

(
2WV −

β21
k

))
y

= 0, (2.70)

which, after expanding the derivatives, and with the use of the consistency relations (2.58)-
(2.60), yields the final form:

WV t +

(
V

3
+ αq2

)
WV x −

1

3
WAAx + 2α (WVDq + qDWV +WBDp) = 0. (2.71)

The two Equations (2.65) and (2.71) are analogous to the two variational equations with
respect to the angles ψ and θ respectively.

The next step consists in rearranging the variational equations with respect to the inte-
gration constants, Equations (2.49). From the first one, kWA = 1

6 , it follows:

(kWA)t = 0 ktWA + kWAt = 0. (2.72)

Recalling that

kt = −ωx =

(
k
V

3
+ α

l2

k

)
x

, (2.73)

it is found that:

WAt +
ωx
k
WA = 0

WAt +
1

k

(
k
V

3
+ α

l2

k

)
x

= 0.
(2.74)

After some algebraic manipulations, the following form appears:

WAt +

(
V

3
+ αq2

)
WAx −

1

3
WAVx + 2αqDWA = 0, (2.75)

which is particularly interesting since for α = 0 coincides with the Whitham’s Equations for
the KdV case.

Another equation can be obtained by time derivation of the auxiliary variable q:

qt =
lt
k
− l

k

kt
k

= −ωy
k

+ q
ωx
k

= −1

k
Dω

= −D
(
V

3
+ αq2

)
−
(
V

3
+ αq2

)
ky − qkx

k

= −D
(
V

3
+ αq2

)
−
(
V

3
+ αq2

)
qx,

(2.76)

which is equivalent to:

qt +

(
V

3
+ αq2

)
qx +

1

3
DV + 2αqDq = 0. (2.77)

This last equation is peculiar of the two-dimensional case, since in the one-dimensional KdV
Equation there is no room for modulating the wavefront direction.
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A similar computation for p provides the last equation:

pt = (β2 − qβ1)t
= qγx − β1qt,

(2.78)

that can be written as:

pt = −β1qt −Dγ = 0

= −β1qt −D
(
γ − ω

k
β1 +

(
V

3
+ αq2

)
β1

)
= −β1qt −D

(
γ − ω

k
β1

)
−D

(
V

3
+ αq2

)
β1 −

(
V

3
+ αq2

)
Dβ1.

(2.79)

Making use of the fact that β2x = β1y leads to:

pt = −β1qt −D
(
γ − ω

k
β1

)
−D

(
V

3
+ αq2

)
β1 −

(
V

3
+ αq2

)
(β2,x − qβ1,x)

= −β1qt −D
(
γ − ω

k
β1

)
−D

(
V

3
+ αq2

)
β1 −

(
V

3
+ αq2

)
(px + β1qx)

= −D
(
γ − ω

k
β1

)
−
(
V

3
+ αq2

)
px − β1

(
qt +

(
V

3
+ αq2

)
qx +D

(
V

3
+ αq2

))
,

(2.80)

which, by Equation (2.77), finally yields:

pt +

(
V

3
+ αq2

)
px +D

(
γ − ω

k
β1

)
= 0. (2.81)

The final result of this analysis is the following modulation system for the KP Equation:

WAt +

(
V

3
+ αq2

)
WAx −

1

3
WAVx + 2αqDWA = 0

WBt +

(
V

3
+ αq2

)
WBx +

1

6
WABx + α (WBDq + 2qDWB +WADp) = 0

WV t +

(
V

3
+ αq2

)
WV x −

1

3
WAAx + 2α (WVDq + qDWV +WBDp) = 0

qt +

(
V

3
+ αq2

)
qx +

1

3
DV + 2αqDq = 0

pt +

(
V

3
+ αq2

)
px +D

(
γ − ω

k
β1

)
= 0.

(2.82)

The original, physical modulation variables are: β1, β2, γ, k, l, ω,A,B. In the modulation sys-
tem (2.82), instead, the modulation variables are WA,WB,WV , p, q. These variables have a
more symmetric form than the original modulation parameters. However, the equations (2.82)
are extremely impractical for actual computations, and in the study of the physical evolu-
tion of a traveling wave it is convenient to start with a specific ansatz instead of the general
form (2.33). Two examples of this kind of study will be discussed in Sections 2.3 and 2.4.
Despite of this, the modulation Equations in the form of (2.82) are a valuable tool for anal-
ysis. As an example, from the ground breaking work of [49], it can be inferred that if the
system (2.82) could be diagonalised, this would be equivalent to proving integrability of the
KP problem.

The close relationship between the KdV and KP Equation can be seen also from the fact
that, for α = 0, l = 0, q = 0, β2 = 0, ∂y = 0, the modulation Equations (2.82) for the KP
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Equation become:

WAt +
V

3
WAx −

1

3
WAVx = 0

WBt +
V

3
WBx +

1

6
WABx = 0

WV t +
V

3
WV x −

1

3
WAAx = 0,

(2.83)

which are exactly the modulation system for the KdV Equation as found originally by
Whitham [116] (apart from a correction in the coefficients due to a different choice of scaling
in the original PDE).

2.3 Modulation Equations for the KPI line soliton

This section is devoted to the derivation of the Whitham modulation equations for a class
of exact solutions known as line solitons. The modulations for the line solitons could in
principle be obtained by algebraic manipulation of the general framework of Equation (2.82).
However, it is convenient to apply the Lagrangian averaging machinery directly to the line
soliton traveling wave. A similar idea will be pursued in Section (2.4) for the lump solution
of the KPI Equation.

The line soliton for the KPI Equation is the soliton solution for the associated KdV
Equation:

ut + uux + ε2uxxx = 0, (2.84)

whose expression is:

u(x, y, t) = a sech2

(√
a

12
(x− a

3
t)

)
(2.85)

for any amplitude a > 0. As such, the line soliton does not depend on the y coordinate.
A possible modulation for the line soliton (2.85) in the spirit of the discussion of Section 2.1

is:

u(θ, x, y, t) = a sech2 θ θ =

√
a

12

(
x

ε
+
l

k

y

ε
− ω

k

t

ε

)
. (2.86)

If the parameters are allowed to change slowly with x, y, t, then the structure of the modulated
line soliton becomes clear:

u(θ, x, y, t) = a(x, y, t) sech2

(√
a(x, y, t)

12

(
x

ε
+
l(x, y, t)

k(x, y, t)

y

ε
− ω(x, y, t)

k(x, y, t)

t

ε

))
. (2.87)

The expression (2.87) allows for slow modulations of the soliton’s wavefront shape, heigth,
and speed of propagation.

The traveling wave (2.86) is associated to the following potential function:

ϕ =
√

12a tanh

(√
a

12

(
x

ε
+
l

k

y

ε
− ω

k

t

ε

))
, (2.88)

in the sense that
u = εϕx. (2.89)

For clarity, we recall here the expression for the Lagrangian density:

L = ε2ϕtϕx +
ε3

3
ϕ3
x − ε4ϕ2

xx + αε2ϕ2
y. (2.90)
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Since ϕ is known, it is possible to compute the following averages:

〈ϕtϕx〉 :=

ˆ ∞
−∞

ϕtϕx dx = − 8√
3

ω

k

a3/2

ε
〈ϕ3

x〉 =
32

5
√

3

a5/2

ε2
(2.91)

〈ϕ2
xx〉 =

8

15
√

3

a5/2

ε3
〈ϕ2

y〉 =
8√
3

l2

k2
a3/2

ε
. (2.92)

Note that the integrals in Equations (2.92) and (2.93) are performed only on x, and not on
R2 (and indeed, if the integrals were performed on the whole plane, these would diverge as
the line soliton (2.86) is a nondecreasing function in the y direction). The integrals (2.92) are
in turn useful in the computation of the averaged lagrangian:

L = k

ˆ ∞
−∞

Ldx = −ωa3/2 +
1

5
ka5/2 + α

l2

k
a3/2, (2.93)

where the equality in Equation (2.93) is understood up to an irrelevant multiplicative constant.
The variation with respect to the amplitude a gives the dispersion relation:

∂L

∂a
= 0 ω =

1

3
ka+ α

l2

k
. (2.94)

The variation with respect to the angle θ leads to the following conservation law:

(a3/2)t +

(
1

5
a5/2 − αq2a3/2

)
x

+
(

2αqa3/2
)
y

= 0, (2.95)

that can be written in advective form as:

at +

(
1

3
a− αq2

)
ax −

4

3
αaqqx + 2αqay +

4

3
αaqy = 0, (2.96)

with q = l/k. An evolution equation for q can be derived using the compatibility condi-
tions (2.58), (2.59), (2.60) and the dispersion relation (2.94):

qt =
lt
k
− l

k

kt
k

qt −
l

k2
ωx +

1

k
ωy = 0,

(2.97)

that after some algebraic computations simplifies to:

qt −
1

3
qax +

(
1

3
a− αq2

)
qx +

1

3
ay + 2αqqy = 0. (2.98)

The two modulation equations for a and q can be written jointly as:(
a
q

)
t

+

[
1
3a− αq2 −4

3αaq
−1

3q
1
3a− αq2

](
a
q

)
x

+

[
2αq 4

3αa
1
3 2αq

](
a
q

)
y

=

(
0
0

)
. (2.99)

It will be convenient to denote with A1 and A2 the two matrices of equation (2.99), so that
if v = (a, q), then Equation (2.99) can be expressed more compactly as:

vt +A1vx +A2vy = 0. (2.100)

After the system (2.99) is solved for a and q, the remaining modulation parameters ω, k, l can
be obtained, e.g. by the following procedure. Starting with the consistency condition:

kt + ωx = 0, (2.101)
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and making use of the dispersion relation (2.94) gives the evolutionary equation for k:

kt +

(
1

3
a− αq2

)
kx + 2αqky +

1

3
αaxk = 0, (2.102)

with a and q known. Solving Equation (2.102) allows in turn to get l and ω from the simple
expressions:

l = qk (2.103)

and (2.94), that we rewrite for convenience:

ω =
1

3
ka+ α

l2

k
. (2.104)

Alternatively, it would be possible to start with the consistency relation dual to the (2.101):

lt + ωy = 0 (2.105)

and to repeat the same computations as above to obtain an evolutionary equation for l:

lt +

(
1

3
a− αq2

)
lx + 2αqly +

1

3

ay
q
l = 0. (2.106)

Writing the two uncoupled equations (2.102) and (2.106) as a system:(
k
l

)
t

+

[
1
3a− αq2 0

0 1
3a− αq2

](
k
l

)
x

+

[
2αq 0

0 2αq

](
k
l

)
y

+

(1
3axk
1
3
ay
q l

)
=

(
0
0

)
. (2.107)

shows that k and l are advected with the same positive velocity in the x direction and with
negative velocity in the y direction.

We close this section by showing how the modulation equations (2.99) can be derived
directly from the general Whitham system (2.82). For the line soliton solution, we have that
the two roots of smaller magnitude, e2 and e3 are both equal to zero, and the third root e1 is
generally a nonzero positive number:

e1 > 0, e2 = e3 = 0. (2.108)

In this case, from Equation (2.23), we have for the potential and the integration constants:

A = B = 0, V = e1. (2.109)

Furthermore, from Equation (2.38), the amplitude of the line soliton is given by:

a = e1 − e2 = e1 = V. (2.110)

With these simplifications, the action W can be computed explicitly as:

W =
k√
3π

ˆ e1

0
η
√

(e1 − η) dη =
4

15

k√
3π
e
5/2
1 . (2.111)

Note in particular that in Equation (2.111), e1 can be freely interchanged with V or with a,
in virtue of Equation (2.110).

Since W does not depend explicitly on A or B, the first two equations of the (2.82)
contain no information. Similarly, the fifth equation of the (2.82) is an identity. From the
third equation of (2.82), we have:

k√
3π
V 1/2

(
Vt +

(
V

3
+ αq2

)
Vx +

4

3
αV (qy − qqx) + 2αq (Vy − qVx)

)
= 0, (2.112)
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which, after replacing V = a and simplifying gives:

at +
(a

3
− αq2

)
ax + 2αqay +

4

3
αa (qy − qqx) = 0, (2.113)

which concides with the modulation equation for the amplitude found by a different route in
Equation (2.99). Similarly, the fourth equation of (2.82), after replacing V = a and repeating
the computation gives:

qt +
(a

3
+ αq2

)
qx +

1

3
(ay − qax) + 2αq (qy − qqx) = 0, (2.114)

which concides with the modulation equation for q in Equation (2.99).

2.4 Modulation Equations for the KPI lump solution

This section is devoted to the derivation of Whitham’s modulation equations for the lump
solution of the KPI Equation. Lumps are a family of rational solution (see the discussion in
Section 1.3.7), which consist in a very localized peak. The simplest lump solution is defined
by:

u(x, y, t) = 24
−(x− 3b2t)2 + 3b2y2 + 1

b2[
(x− 3b2t)2 + 3b2y2 + 1

b2

]2 , (2.115)

which describes a single peak moving in the x direction with velocity proportional to its
amplitude (and both are proportional to the parameter b2). The tau function for the lump
described above is given by:

τ(x, y, t) =

(
(x− 3b2t)2 + 3b2y2 +

1

b2

)
, (2.116)

so that indeed
u(x, y, t) = 12∂xx log τ(x, y, t). (2.117)

It is convenient to introduce the modulation parameters directly in the τ function. This
amounts to the assumption that the lump’s speed, amplitude, and propagation direction are
allowed to change weakly in space and time, independently of each other. Reintroducing also
the dependence on ε, the modulated lump is expressed by:

τ(x, y, t) =

(
x

ε
− 3

ω

k

t

ε

)2

+ 3

(
l

k

y

ε

)2

+
1

a
, (2.118)

where the modulation parameters are related to the original parameter b by:

ω

k
= b2

l

k
= b a = b2. (2.119)

Note in particular that the modulated amplitude a is a positive function of x, y and t.
The velocity potential in this case is given by:

ϕ(x, y, t) = 12∂x log τ(x, y, t), (2.120)

which gives immediately:
ϕt = −3

ω

k
ϕx. (2.121)

As a result, the Lagrangian density for the lump solution becomes:

L = −3ε2
ω

k
ϕ2
x +

ε3

3
ϕ3
x − ε4ϕ2

xx + αε2ϕ2
y. (2.122)
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In this case, the terms of the averaged Lagrangian are:

〈ϕ2
x〉 :=

ˆ
R2

ϕ2
x dx dy = 96

√
3π
k

l
a 〈ϕ3

x〉 = 1152
√

3π
k

l

a2

ε
(2.123)

〈ϕ2
xx〉 = 192

√
3π
k

l

a2

ε2
〈ϕ2

y〉 = 96
√

3π
l

k
a. (2.124)

The averaged Lagrangian density for the modulated lump solution is then:

L = l

ˆ
R2

Ldx dy = −3ωa+ 2ka2 + α
l2

k
a. (2.125)

Note that the lagrangian averaging in this case differs from the averaging introduced in Equa-
tion (2.93) for the line soliton. Indeed, since the lump is a highly localized solution, it belongs
to the class of square integrable functions on R2, L2(R2).

Requiring that the action is stationary with respect to amplitude variations leads to the
dispersion relation:

δa : ω =
4

3
ka+

1

3
α
l2

k
. (2.126)

The dispersion relation (2.126) for the lump solution is remarkably similar to the dispersion
relation (2.94) for the line soliton. To check the consistency of the dispersion relation so
obtained, it is sufficient to replace the definitions (2.119) in Equation (2.126), which is indeed
an identity if α = −1.

Stationarity of the action with respect to angular variations gives the conservation law:

δθ : (3a)t +
(
2a2 − αq2a

)
x

+ (2αqa)y = 0. (2.127)

Equation (2.127) can be expressed in the equivalent form:

at +

(
4

3
a− 1

3
αq2
)
ax −

2

3
αaqqx +

2

3
αqay +

2

3
αaqy = 0. (2.128)

A second modulation equation can be obtained by combining the definition of q with the
integrability conditions:

kt + ωx = 0 lt + ωy = 0 ky − lx = 0, (2.129)

as follows. Starting with the identity:

qt =
lt
k
− l

k

kt
k

= −1

k
ωx +

l

k2
ωy (2.130)

and replacing in Equation (2.130) the definition of ω coming from the dispersion relation (2.126),

qt −
l

k2

(
4

3
ka+

1

3
α
l2

k

)
x

+
1

k

(
4

3
ka+

1

3
α
l2

k

)
y

, (2.131)

which, after some algebraic manipulations, yields the modulation equation for q:

qt −
4

3
qax +

(
4

3
a− 1

3
αq2
)
qx +

4

3
ay +

2

3
αqqy = 0. (2.132)

Summarising, the modulation equations for the lump, written in advective form are:(
a
q

)
t

+

[
4
3a− 1

3αq
2 −2

3αaq
−4

3q
4
3a− 1

3αq
2

](
a
q

)
x

+

[
2
3αq

2
3αa

4
3

2
3αq

](
a
q

)
y

=

(
0
0

)
. (2.133)
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If a and q are known, e.g. by solving the system (2.133), the remaining modulation parameters
ω, k, l can be obtained by imposing the relations:

q =
l

k
ω =

4

3
ak +

1

3
α
l2

k
kx = ly. (2.134)

An more practical way for reconstructing the wave parameters ω, k, l is to start with the
relation:

qx =
lx
k
− l

k

kx
k
, (2.135)

that after replacement of the rightmost equation in (2.134) becomes:

qx =
1

k
(lx − qly) . (2.136)

Finally, multiplying the (2.136) by l and rearranging gives a modulation equation for l:

lx − qly = l∂x log q. (2.137)

After solving Equation (2.137), ω and k can be found with the algebraic relations:

k =
l

q
ω =

4

3
a
l

q
+

1

3
αql. (2.138)

A symmetric alternative to Equation (2.137) can be derived for k, by writing down explicitly
the derivative of qy and repeating the same passages as done in Equations (2.135) and (2.136),
leading to the modulation equation for k:

kx − qky = kqy. (2.139)

Alternatively, it is possible to proceed as in Equations (2.102)-(2.106) to obtain the two
equations for k and l:

kt +

(
4

3
a− 1

3
αq2
)
kx +

2

3
αqky +

4

3
αaxk = 0 (2.140)

lt +

(
4

3
a− 1

3
αq2
)
lx +

2

3
αqly +

4

3
α
ay
q
l = 0 (2.141)

(2.142)

which are the analogous for the lump of Equations (2.107).

2.5 Stability of line solitons and lumps

The stability of solutions to the KP Equation is an active research topic, which started with
the seminal work by [120] on the stability of line solitons using IST. In this work, it is shown
that in the KPI Equation line solitons are unstable since these tend to radiate away their
mass and energy in a packet of small amplitude waves. Numerical evidence of the instability
of line solitons in the KPI Equation, leading to wave breaking and the development of lumps
was provided in [83]. A similar kind of instability for line solitons, leading to the development
of lumps, was derived analytically in [68]. In [101] the asymptotic stability of lumps is shown,
and it is proved that in some configurations, lumps can lose mass by low-amplitude radiation,
stabilizing after a while as a lump with smaller amplitude.

It is interesting to study the stability of line soliton and lumps by means of Whitham
Modulation Theory. The stability properties of line solitons and lumps can be studied by
checking whether the modulation systems (2.99) and (2.133) respectively are hyperbolic or
elliptic. To this end, consider the linear combination:

A1 + ξA2, (2.143)
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where A1 is the matrix that multiplies the x-derivatives in Equation (2.133), A2 is the matrix
that multiplies the y-derivatives in Equation (2.133), and ξ is a real number. System (2.133)
is hyperbolic if the eigenvalues of A1 + ξA2 are real for all ξ ∈ R, otherwise if the eigenvalues
are complex for some ξ, then the system is elliptic.

Both for the line soliton and the lump, the eigenvalues λ1,2 of A1 + ξA2 can be computed
explicitly as:

λ1,2 =
1

3
a− αq2 + 2αqξ ± 2

3

√
αa(ξ − q)2 (2.144)

for the line soliton, and

λ1,2 =
4

3
a− 1

3
αq2 +

2

3
αqξ ± 2

√
2

3

√
αa(ξ − q)2, (2.145)

for the lump. Since a > 0, for both cases the modulation equations are elliptic for the KPI
Equation (α = −1). It was shown in [41] that elliptic systems of conservation laws develop a
singular point, and the singularity unfolds as an elliptic umbilic catastrophe. This behaviour
is similar with the semiclassical limit of the focusing nonlinear Schrödinger Equation in one
space dimension, and this analogy will be explored further in Chapter 5.

2.6 Discussion

The main result of this Chapter consists in the modulation equations for the line soliton and
for the lump, respectively Equation (2.99) and (2.133). A similar, but not equivalent set
of modulation equations was derived in [6] and in [10], using multiple scale analysis. The
system (2.82) differs from the cited works because the equation for p is an evolution equation,
while in [6, 10] is a constraint on the space derivatives of p. We regard that in principle it is
not possible to assume that the average of p is constant in time in a periodic setting.

The modulation equations are not suitable for practical computations due to the difficulty
of providing initial or boundary values if the modulation system is respectively hyperbolic
or elliptic. Nevertheless, the modulation equations constitute a valuable tool for stability
analysis.

According to the discussion of Section 2.5, it should be expected that the modulation of
the line soliton is not stable for the KPI Equation. A similar result was shown numerically
in [83], where it can clearly be seen that the evolution under the KPI flow of a line soliton
with a very small perturbation leads very soon to a wave breaking with the formation of very
high localized peaks (interpreted as lump solutions).

A second apparent instability result of Section 2.5 regards lump solutions. In this case,
the results obtained from modulation theory are open to interpretation, since it is known that
pure lump solutions are stable in the KPI Equation. A possible explanation for this observed
behaviour is that lump modulation cannot happen for a single lump, but is inherently related
to some secondary effect, such as dispersive radiation or interaction with other lumps (as is
the case in the numerical computations, since the algebraic decay of lumps at infinity is likely
responsible for some lump-lump interaction).

It would be interesting to study the integrability properties of the modulation system for
the KP Equation. Since the original equation is integrable, it is expected that the modulation
system too should be integrable. Given the hydrodynamic form of the modulation system:

zt + A1zx + A2zy = 0, (2.146)

a convenient definition of integrability is that the system above can be written in diagonal
form.

A possible way to check for integrability of a system of hydrodynamic type in the form (2.146)
is due to Ferapontov and Khusnutdinova, that in the paper [48] have given a remarkably simple
integrability criterion. This criterion consists in assembling the matrix:

(ρI + A1)
−1 (σI + A2) ; (2.147)
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then the integrability of system (2.146) is ensured if the matrix (2.147) can be diagonalised
for any real ρ, σ.

In this way, integrability of the modulation systems for the line soliton and for the lump
can be checked immediately. Indeed, considering the modulation system for the variables
(a, q, k), the matrices A1 and A2 take the form:

A1 =

1
3a− 1

3αq
2 −4

3αq 0
−1

3q
1
3a− 1

3αq
2 0

1
3αk 0 1

3a− 1
3αq

2

 A2 =

2αq 4
3αa 0

1
3 2αq 0
0 0 2αq

 (2.148)

for the line soliton, and:

A1 =

4
3a− 1

3αq
2 −2

3αq 0
−4

3q
4
3a− 1

3αq
2 0

4
3αk 0 4

3a− 1
3αq

2

 A2 =

2
3αq

2
3αa 0

4
3

2
3αq 0

0 0 2
3αq

 (2.149)

for the lump. The eigenvalues of the matrix (2.147) with the two special choices (2.148)
and (2.149) for A1 and A2 can be computed easily with any computer algebra system, showing
that generically the matrix (2.147) can be diagonalised.

For the full Whitham system (2.82), the procedure outlines here cannot be applied since
the algebraic computations involved would require too much time for a 5×5 or a 6×6 system.
To address this difficulty, in the work [48], the authors propose an alternative approach that
consists in computing the “Haantjes tensor” associated to the matrix (2.147), and may be
applied to larger systems such as the one of Equation (2.82). This possibility is kept open for
a future work on the integrability and Hamiltonian properties of Whitham’s system for the
KP Equation.
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Chapter 3

Numerical Method

Despite the spectacular theory that allows to generate exact solutions for the KP Equation
in terms of tau functions or by means of elliptic functions on Riemann surfaces, the direct
problem is much harder. Specifically, the problem of finding the evolution of a given initial
datum under the KP flow is in general not as simple as giving arbitrary exact solutions, mainly
due to the heavy computational machinery required by the Inverse Scattering Transform.

As a result, numerical methods are still an important tool for the study of the KP Equation.
There are however several difficulties that make the numerical study of such equations a
particularly delicate task, the most formidable being the highly oscillatory behaviour of KP’s
traveling wave solutions for small dispersion. For any discretization method, a fast changing
solution requires the use of high resolution numerics. This in turn implies an important effort
on the algorithmic side, asking for the full exploitation of the possibilities brought forward by
modern (vectorised, parallel) cluster architectures. Highly localised solutions, such as lumps,
contribute as well to this computational burden.

For such reasons, it is worthwile to discuss the details of the numerical methods and of the
practical implementation on modern clusters. This Chapter describes precisely our approach
to address these difficulties with a suitable numerical method.

3.1 Fourier pseudospectral method

Almost all numerical works on the KP Equations, use a Fourier pseudospectral method.
The main reasons for the popularity of Fourier pseudospectral methods are the difficulty of
discretising the antiderivative operator, the high order linear dispersive operator, and the diffi-
culty of imposing boundary conditions on non-periodic domains (but see [28] for a workaround
in the imposition of initial data with non-periodic derivatives in Fourier methods). One of the
first numerical studies of the KP Equations with Fourier methods was [21], and more recently
a series of works by Klein [80, 81] have shown how to obtain accurate numerical solution for
a variety of regimes (solitons, lumps, blowup [84, 83], dispersive shock waves [82], oscillatory
regimes [85]). A hybrid method combining a Fourier pseudospectral method for the linear
part with a discontinuous Galerkin scheme for the nonlinear part and operator splitting in
time is proposed in [45]. A rare alternative to Fourier methods is presented in [29], where
the authors develop a compact Finite Difference Method and validate it against a Fourier
pseudospectral method. For a different flavour of numerical analysis, focused on the class of
elliptic theta function solutions based on Chebyshev Spectral Methods was pursued in [52].
The numerical method chosen in this work is the Fourier Pseudospectral Method (also called
Fourier Collocation Method).

There are some advantages of Fourier methods (or of Spectral Methods in general) that
cannot be underestimated, namely:

• the knowledge of the expansion coefficients allows to extract relevant information on the
quality of the numerical solution and to reckon some relevant features of the solution
which otherwise would be out of reach;

• several differential or integral operators are hard to implement in a numerical code based
on the space representation, but have straightforward or at least reachable implemen-
tation in a spectral code;
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• zero numerical dissipation and dispersion.

Furthermore, the presence of a structured problem allows to achieve tremendous throughput,
communication balance, and a very high sustained performance (in terms of the peak percent-
age) in modern cluster architectures. The details for an efficient implementation of a Fourier
spectral method are described in Chapter 4. Clearly, there are also drawbacks in the choice
of a Fourier pseudospectral method, some of which are:

• it is possible to consider only domains with periodic boundary conditions;

• the resolution is fixed throughout the domain, thus regions in which the solution changes
slowly are likely to be overresolved, leading to suboptimal memory usage and generating
very large output files.

The remaining part of this Section describes the Fourier pseudospectral method used for
the numerical approximation of the KP Equation. Some important references on Fourier and
other Spectral Methods are [27, 23, 56, 113].

3.1.1 Fourier Interpolation

In the following, all the equations are set in T2, the two-dimensional torus, as Fourier expan-
sions allow only for periodic boundary conditions. It is understood that x, y form a cartesian
coordinate system on T2, with x, y ranging in the interval [0, 2π]. The approximation method
adopted in this work is based on the Fourier series representation of the solution to the KP
Equation:

u(x, y, t) = <
∞∑

ξ1=−∞

∞∑
ξ2=−∞

ûξ1ξ2(t)eiξ1xeiξ2y, (3.1)

with the symbol < denoting the real part of a complex number. The coefficients ûξ1ξ2(t) are
related to the original function u as:

ûξ1ξ2(t) =
1

(2π)2

ˆ 2π

0

ˆ 2π

0
u(x, y, t)e−iξ1xe−iξ2y dx dy. (3.2)

If the series in the representation (3.1) is truncated afterN terms in each variable, the resulting
function is called uN :

uN (x, y, t) = <
N/2−1∑
ξ1=−N/2

N/2−1∑
ξ2=−N/2

ûξ1ξ2(t)eiξ1xeiξ2y. (3.3)

It is well known [27] that as N → ∞, for a continuous function u of bounded variation, the
expression (3.3) will converge uniformly to u. In the following, often the symbol < will be
understood. The series representation (3.1) can be a useful tool for constructing a convergence
estimate: by applying the Parseval identity to the norm of the difference between u and uN

leads to the following estimate for the L2 norm of the truncation error:

‖u− uN‖2L2 = 2π
∑

|ξ1|≥N/2

∑
|ξ2|≥N/2

|ûξ1ξ2 |2. (3.4)

In a similar fashion, noting that that basis functions eiξx are unimodular, we obtain an estimate
for the L∞ norm of the error:

‖u− uN‖L∞ ≤
∑

|ξ1|≥N/2

∑
|ξ2|≥N/2

|ûξ1ξ2 |. (3.5)

For a periodic, smooth function the error decays very rapidly with N . More precisely, the
magnitude of the Fourier coefficients of the error approach zero faster [56] than any polynomial
in N . This behaviour is often called spectral convergence, or exponential convergence.



3.1. Fourier pseudospectral method 43

In practical computations, the Fourier transform (3.2) is often replaced by its discrete
counterpart. The discrete Fourier transform is based on an equispaced grid, whose N points
xi are equally spaced on the domain:

xj =
2πj

N
, yl =

2πl

N
, j, l = 0, . . . , N − 1 (3.6)

so that the computational points on T2 are:

xjl := xjyl =
(2π)2jl

N2
j, l = 0, . . . , N − 1. (3.7)

Then, the discrete Fourier transform is defined as:

ûjl(t) =
1

N

N−1∑
j=0

N−1∑
l=0

u(xj , yl, t)e
−ijxje−ilyl . (3.8)

The inverse discrete Fourier transform allows to recover the value of u at the grid points (3.6)
by means of the sum:

u(xj , yl, t) =

N/2−1∑
m=−N/2

N/2−1∑
n=−N/2

ûmneijxmeilyn . (3.9)

If the pointwise values (3.9) are known, the value of the approximant uN can be defined at
any point in T2 by interpolation with trigonometric polynomials:

uN (x, y, t) =

N/2−1∑
j,l=−N/2

ûjle
ijxeily, (3.10)

or equivalently by interpolation with cardinal sine functions:

uN (x, y, t) =

N/2−1∑
j,l=−N/2

ûjl sinc(x− xj) sinc(y − yl). (3.11)

The Discrete Fourier Transform (3.8) can be interpreted as an approximation of the exact
Fourier Transform (3.2). An important consequence of this approximation is that the coeffi-
cients of the trigonometric interpolant (3.10) are in general different from the coefficients of
the Fourier projection (3.3). More precisely, denoting by Iûjl the Fourier coefficients of the
interpolant (3.10) and by Pûξ1ξ2 the Fourier coefficients of the projection, it can be shown [27,
Ch. 2] that:

Iûjl = Pûjl +

∞∑
m,n=−∞
m,n 6=0

Pûk+Nm,j+Nn ∀ j, l = 0, . . . , N − 1. (3.12)

The summation on the right hand side is called the aliasing error. The presence of the
aliasing error implies that the error of the interpolant (3.10) is greater than the error for
the projection (3.3). This is a typical effect of pseudospectral methods, as Galerkin spectral
methods do not suffer from aliasing errors. It has been shown both in theory and in the
computational practice that the aliasing error decays as fast as the truncation error if the
number of modes is sufficiently large. Unfortunately, practical computations are often quite
far from the large N asymptotic, so aliasing errors cannot be ignored. There exist several
approaches to reduce aliasing in practical computations, such as the 3/2-rule, or the phase
shift method [27, Ch. 2]. The approached followed here is different and guided more by
practical considerations available in the literature than by theoretical analysis, and consists
in the removal of aliasing by means of a Krasny filtering [87]. This filtering consists in setting
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to zero all the Fourier coefficients with magnitude smaller than a threshold, here taken equal
to 10−10, after every operator application. As an example, the application of L to the Fourier
representation û of some function u takes the form:

Lu := σjlL̂ûjl, (3.13)

with

σjl =

{
1 if |ûjl| > 10−10

0 otherwise.
(3.14)

In [80] it is observed that the combination of Kransy filtering with sufficiently high resolution
in space allows to obtain very accurate results in highly oscillatory regions even with Fourier
pseudospectral expansions. An influential work on the use of Krasny-inspired filtering for the
removal of aliasing in the Euler hydrodynamic equations is [66], and this kind of de-aliasing
filters are popular in the hydrodynamics community.

An important consequence of the representation (3.10) is that linear differential operators
act as multiplications on the Fourier components:

∂xu
N = ∂x

N−1∑
j,l=0

ûjle
ijxeily

=

N−1∑
j,l=0

ijûjle
ijxeily.

(3.15)

An analogous property holds for the antiderivative, when expressed in frequency space:

∂−1x uN =

ˆ
R

N−1∑
j,l=0

ûjle
ijxeiky

 dx

=

N−1∑
j,l=0

1

ij
ûjle

ijxeiky.

(3.16)

The last important property that is used in the analysis of the method (but not in the practical
computations) is the following representation for space multiplications:

uNvN =

N−1∑
j,l=0

ûjle
ijxeily

 N−1∑
m,n=0

v̂mneimxeiny


=

N−1∑
j,l=0

∑
p+r=j

∑
q+s=l

ûpqv̂rse
ijxeily.

(3.17)

Namely, products in physical space become convolutions in Fourier variables. Usually convo-
lution is denoted by a star ?, so that the abbreviated notation for Equation (3.17) is:

uNvN = û ? v̂ ûv̂ = uN ? vN . (3.18)

Summing up, the important relations (3.15), (3.16), (3.17) can be given in terms of the Fourier
coefficients as:

space frequency

∂xu
N ijûjl (3.19)

∂yu
N ilûjl (3.20)

∂−1x uN
1

ij
ûjl (3.21)

uNvN û ? v̂. (3.22)
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With this machinery in place, it is possible to introduce the approximation scheme. For
generality, the original PDE is recast in the form:

ut = Lu+ N(u), (3.23)

where L denotes the linear part of the equation andN the nonlinear part. In the KP Equation,
these operators are defined as:

L = −ε2∂xxx − α∂−1x ∂yy N(u) = uux =
1

2
∂x
(
u2
)
. (3.24)

Note that in order to recast the KP Equation in the form (3.23), the antiderivative with
respect to x had to be introduced in the definition of L.

3.1.2 Fourier Projection and Collocation

Up to this point, only Fourier interpolation and projection have been discussed, meaning
that the expansion coefficients for the Fourier series are supposed to be known, and several
important properties following from this representation have been discussed. The purpose
of a numerical approximation scheme is however that of finding an approximate value for
the solution which is not known a priori. Fourier Spectral Methods find an approximation
of the solution by prescribing a rule that allows to find an approximation to the Fourier
expansion coefficients. The numerical solution can then be evaluated at any point following
the interpolation techniques presented in the previous section.

Spectral Methods are generally classified in two main families: Galerkin methods and col-
location methods. Galerkin methods require that a weak form of the original Equation (3.23)
holds on some appropriate finite-dimensional functional space. This requires the introduction
of an inner product (·, ·), which here we suppose to be the standard L2 inner product on the
two-dimensional torus. The Galerkin projection defining the Fourier Spectral Method then
reads:

(eimxeiny, uNt ) = (eimxeiny,LuN + N(uN )) ∀ m,n = 0, . . . , N − 1. (3.25)

Equation (3.25) represents a system of N2 equations for the N2 expansion coefficients ûNjl of
the numerical approximation uN , that can be determined by solving this nonlinear system.

An alternative to Fourier Spectral Methods comes from Fourier pseudospectral methods,
which require that the PDE (3.23) is fulfilled at the collocation points introduced in (3.7).
Formally, this is equivalent to the Galerkin form (3.25) where the test functions eimxeiny are
replaced by Dirac deltas centered in the collocation points (3.7):

(δ(x− xm)δ(y − yn), uNt ) = (δ(x− xm)δ(y − yn),LuN + N(uN )) ∀ m,n = 0, . . . , N − 1.
(3.26)

The unknown expansion coefficients ûjl(t) are thus given by the system of ODEs:

d

dt
ûjl = L̂ûjl + N̂(u) for j, l = 0, . . . , N − 1. (3.27)

Equation (3.27) is a system of N2 ODEs and N2 unknowns. The symbol L̂ denotes the Fourier
representation of the linear operator L, and for the KP Equation is given by:

L̂ = iε2j3 − αi
l2

j
. (3.28)

The antiderivative in the definition of L makes its Fourier transform singular. For practical
computations, the singularity is regularized as:

L̂ =

{
iε2j3 − α il2

j if j 6= 0

iε2(j + eps)3 − α il2

j+eps otherwise,
(3.29)
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where eps ' 10−16 is the machine epsilon, or the number of digits representable in double
precision arithmetic.

The nonlinear operator is expressed as the Fourier transform of the result that follows by
computing the nonlinearity in the original variables. This matches closely the strategy used
for actual computations, since the steps needed to evaluate the nonlinear operator in this way
are:

N̂(u) = F
[

1

2
ij
(
F−1 [û]

)2]
, (3.30)

where F and F−1 denote the direct and inverse Fourier transforms. The computation in (3.30)
requires just O(N2 logN) operations due to Fast Fourier Transform algorithms [55]. In con-
trast, computing the nonlinearity directly in the transformed variables would mean carrying
out the following explicit computation:

N̂(û) = û ? (ijû), (3.31)

requiring O(N4) operations.

3.2 Time integration

The space discretization algorithm changes dramatically the nature of the approximation
problem, in the sense that the initial PDE is replaced by a system of ODEs (3.27) for the
Fourier coefficients. The goal of this Section is the description of an appropriate, efficient
(not necessarily the best) numerical method for advancing in time the Fourier coefficients
according to some approximation of Equation (3.27).

There are two very important observations regarding the system of ODEs (3.27):

• the linear part is purely imaginary;

• the linear operator grows quite rapidly with the wavenumber (O(j3)).

These two facts combined make the problem “stiff”, meaning that standard explicit time
advancement methods are unlikely to work well on such problem, due to excessive restrictions
on the timestep size. Implicit methods however are impractical for large scale computations,
since these would require some form of nonlinear iteration, which in turn would need the
solution of a large, dense linear system, thus jeopardising one of the greatest advantages of
the Fourier representation: the fact that linear operators are diagonal (and as such, can be
inverted in O(N2) operations, versus the O(N4) operations required by a well-preconditioned
iterative method1).

In addition to this difficulty, it is important to make sure that the time integrator does
not compromise the accuracy of the Spectral Method, and that the numerical errors do not
grow too fast, otherwise long-time computations would be completely unreliable.

Some important observations regarding the time integrator that can be helpful in guiding
the choice or the development of a numerical scheme are:

1. the integrator should behave well for a purely dispersive, stiff problem (i.e., it should
not require a time step size very much smaller than the smallest physical time scale);

2. a high resolution in time is required, and should be mantained for long times. This
implies that the time integrator should have at least order 3;

3. fully implicit methods should be avoided, since the cost of nonlinear iterations on the
convective term would be prohibitive for the required high space resolution.

It is clear that there is some tension between the requirements 1) and 3). Implicit methods
are known to be much more stable than explicit methods with stiff problems, but at the same

1assuming that a good preconditioner is available, which however does not seem to be the case for this
problem, at least to the best of our knowledge. The worst case complexity, assuming a Krylov method without
restart and exact arithmetic would be O(N6), but with restart a Krylov method may well stagnate undefinitely.
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time they break rule 3). Strong stability preserving methods, which are very popular for
hyperbolic equations, are very efficient and preserve accurately some important properties of
the nonlinear part of the equation, but are not suitable for stiff problems, thus breaking rule 1).
A class of methods studied in [15, 44] precisely to address this tension between a stiff linear
part and an explicit, yet accurate advancement of the nonlinear part are implicit-explicit
(IMEX) methods. IMEX Methods originally relied on multistep architectures, and where
extended to the multistage case starting with the work [25] on Implicit-Explicit Runge–Kutta
Methods.

In this work, multistage (Runge–Kutta) methods are preferred over multistep methods
(such as the Adams methods) due to their simplicity, as the former do not need a starting
procedure.

Several state-of-the-art numerical methods suitable for the KP Equations are studied
in [81] and [109], and the results of these references point to Driscoll’s Composite Runge
Kutta method [37], which proved to be the most efficient among fourth order schemes in
terms of error vs time step size. Klein suggests to avoid Exponential Time Differencing [64]
for purely dispersive equations, because in this case the φ functions which appear in such
methods are known to perturb the spectrum of the nonlinear part of the equation.

In the remaining part of this section, two new composite Runge Kutta method will be de-
rived with the aim of providing similar performance to Driscoll’s method, while being suitable
as a predictor/corrector for the future implementation of a Deferred Correction Method [31,
32].

3.2.1 Standard Implicit-Explicit Runge–Kutta Methods

The general theory of Runge–Kutta methods is a classic subject, and is assumed here. For a
detailed introduction to the theory of Runge–Kutta Methods, see e.g. [61]. In the following,
it is assumed that the time interval [0, T ] is divided inM equally spaced subintervals [ti, ti+1],
such that

h := tn+1 − tn =
T

M
. (3.32)

The approximate solution to the system of ODEs (3.23) at time tn is denoted by un := uN (tn).
Implicit-Explicit Runge–Kutta (here denoted by IMEX-RK) Methods adopt a diagonally

implicitRunge–Kutta Method for the linear, stiff part of the equation and an explicit method
for the nonlinear part.

The standard form of an s-stage IMEX-RK integrator is:

un+1 = un + h

s∑
i=0

bi Lk
i + h

s∑
i=0

b̂iN(tn + ĉih, k
i) (3.33)

ki = un + h
i∑

j=0

aij L
(
un + hbjk

j
)

+ h
i−1∑
l=0

âilN(tn + ĉih, u
n + hb̂lk

l). (3.34)

A scheme is completely defined by the constants aij , bi, ci, âij , b̂i, ĉi for i, j = 1, . . . , s, which in
this case are real numbers. The coefficients aij , bi, cj are used for advancing the linear part of
the equation, while the coefficients âij , b̂i, ĉi are used for the remaining terms. A concise way
to present an IMEX Runge–Kutta method is by means of its Butcher tableau, that consists
in arranging the triples (aij , bi, ci) and (âij , b̂i, ĉi) in two side-by-side tables as follows:

0 0

c2 a21 a22 0 0 ĉ2 â21 0

c3 a31 a32 a33 0 ĉ3 â31 â32 0
...

...
. . .

...
...

. . .

cs as1 as2 as3 as4 . . . ĉs âs1 âs2 âs3 . . .

b1 b2 b3 b4 . . . b̂1 b̂2 b̂3 . . .

(3.35)
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This paragraph focuses on third-order, L-stable methods. It will become clear in the follow-
ing that third-order IMEX-RK methods are a good starting point to construct higher-order
methods, as these are a reasonable compromise between accuracy and time step restrictions.

Before discussing the importance of L-stability, it is convenient to recall a few basic notions
concerning the linear stability of a numerical method. Linear stability is studied by setting
N = 0 and writing down explicitly a single step of the numerical method (3.34). The resulting
expression is of the form:

u1 = R(z)u0, (3.36)

with z = hL, and R(z) is a rational function of z, that characterises the linear properties of
the scheme. For Runge–Kutta schemes, it can be shown [60] that the stability function has
the expression

R(z) =
det
(
I − zA+ ze1b

T
)

det (I − zA)
, (3.37)

where I is the s × s identity matrix, A is the matrix with entries aij , b is the vector formed
by the bi, and e1 is a vector of length s (equal to the length of b), with all entries equal to
one. The expression (3.37) can be used in practical stability computations, provided that the
number of stages s is not too large.

Definition 1 (Stability region). The stability region of a numerical method is the set S ⊆ C
where:

S = {z ∈ C : |R(z)| < 1}. (3.38)

If the stability region contains the left half plane,

{z ∈ C : <z ≤ 0} ⊆ S, (3.39)

then the method is called A-stable.

The rationale behind the definition of the stability region lies in the repeated application
of Equation (3.36),

un = (R(z))n u0, (3.40)

which means that, under the reasonable hypothesis that R(z) does not depend on t, the
numerical solution is bounded for all times if and only if |R(hL)| < 1, or equivalently if the
spectrum of hL belongs to S.

As for L-stability, the definition adopted here is the one introduced in [61, Ch. IV.3],
namely:

Definition 2 (L-stability). A method is called L-stable if it is A-stable and in addition:

lim
z→−∞

R(z) = 0. (3.41)

L-stability is a desirable property for a numerical scheme because the fact that the stability
function vanishes at∞ guarantees that those parts of the spectrum of L that are further away
from the origin, which are responsible for the strictest restrictions on the time step, will be well
within the stability region of the scheme and that any spurious, high-frequency oscillations
caused by round-off errors will be damped sufficiently fast as |R(z)| → 0.

It can be proved (see e.g. [60, Ch. II.2]) that a third order Runge–Kutta method must
obey to the following conditions:∑

i

bi = 1
∑
i

b̂i = 1 (3.42)

∑
i

bici =
1

2

∑
i

b̂iĉi =
1

2
(3.43)

∑
i,j

biaijcj =
1

6

∑
i,j

b̂iâij ĉj =
1

6
, (3.44)



3.2. Time integration 49

provided that also:

ci =
i∑

j=0

aij ĉi =
i−1∑
j=0

âij (3.45)

hold for all i = 1, . . . , s. It is understood that the in all the equations (3.42), (3.43), (3.44)
and (3.45) the sums run from 1 to s, and that aij = 0 for j > i and âij = 0 for j ≥ i.

Even if the conditions (3.42) to (3.45) are fulfilled separately by the implicit and explicit
parts of the method, this is not sufficient to guarantee that overall the IMEX method is third
order accurate. In [25] it is proven that the following coupling conditions are required for a
third order IMEX-RK method:∑

i

b̂ici =
1

2

∑
i

b̂ic
2
i =

1

3
(3.46)

∑
i,j

b̂iâijcj =
1

6

∑
i,j

biâijcj =
1

6
(3.47)

∑
i,j

b̂iaijcj =
1

6
. (3.48)

In this work, the following method, introduced in [37] will be regarded as the reference
IMEX-RK method of order 3:

0 0 0 0
1
2

1
6

1
3

1
2

1
2 0

1
2

1
2 −1 1 1

2 0 1
2 0

1 0 0 2
3

1
3 1 0 0 1 0

1
6

1
3

1
3

1
6

1
6

1
3

1
3

1
6

(3.49)

In addition of being third order, this method is L-stable. Among the family of IMEX-RK
method, the (3.49) is also particularly simple to implement and study, since bi = b̂i and ci = ĉi
for all i = 1, . . . , s. Written down explicitly, the scheme (3.49) reads:

k1 = un (3.50)

k2 =

(
1− 1

3
hL

)−1(
un +

1

6
hLk1 +

1

2
hN(k1)

)
(3.51)

k3 = (1− hL)−1
(
un +

1

2
hLk1 − hLk2 +

1

2
hN(k2)

)
(3.52)

k4 =

(
1− 1

3
hL

)−1 (
un + hLk3 + hN(k3)

)
(3.53)

un+1 = un +
1

6
h
[(
Lk1 + N(k1)

)
+ 2

(
Lk2 + N(k2)

)
+ 2

(
Lk3 + N(k3)

)
+
(
Lk4 + N(k4)

)]
.

(3.54)

Another property of Driscoll’s scheme that is clear from the form (3.54) is the small number
of functions evaluations and summations. This is a consequence of the many zeros in the
lower triangular part of the Butcher Tableau (3.49).

For time interpolation purposes, the choice of ci is not satisfactory. Instead, it would be
preferable to consider the following midpoints for the stages of the scheme:

c1 = 0 c2 =
1

3
c3 =

2

3
c4 = 1. (3.55)

The remaining of this section is concerned with the derivation and the subsequent study of
a third-order, L-stable IMEX-RK method that is competitive with (3.49), and realises the
choice (3.55).
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As an initial simplification, in this work only schemes with bi = b̂i and ci = ĉi for all
i = 1, . . . , s are considered. Since the ĉi coefficients are determined by Equation (3.55),
considering the order conditions involving only the bi and the ci gives a linear system for the
bi coefficients:

b1 + b2 + b3 + b4 = 1

1

3
b2 +

2

3
b3 + b4 =

1

2
1

9
b2 +

4

9
b3 + b4 =

1

3
.

(3.56)

Imposing for simplicity b2 = b3 determines the bi coefficients:

b1 =
1

8
b2 =

3

8
b3 =

3

8
b4 =

1

8
. (3.57)

Additionally, this choice fulfills the fourth order condition:

4∑
i=1

bic
3
i =

1

4
. (3.58)

As for the coefficients aij , there are 9 unknowns for the implicit part and 6 for the explicit
part, with two constraints from the order conditions (3.44), other two constraints from the
hypotheses (3.45) and two from the (3.48). As a result, there are 15 − 8 = 7 free variables,
two of which in this work are arbitrarily set to zero:

a41 = 0 a42 = 0. (3.59)

This choice, together with the constraints discussed above leads to the class of methods
characterised by the following Butcher Tableau:

0 0
1
3

1
3 − γ γ 1

3
1
3 0

2
3 γ + δ + 1

3ζ
2
3 − γ − 2δ − 1

3ζ δ 2
3

2
3 − â32 â32 0

1 0 0 1− ζ ζ 1 â43 + 3â32 − 3 4− 3â32 − 2â43 â43 0
1
8

3
8

3
8

1
8

1
8

3
8

3
8

1
8

(3.60)
where for convenience three variables were renamed as: a22 = γ, a33 = δ, a44 = ζ. The
free variables that have to be specified to define the third order method are γ, δ, ζ, â32, â43.
Requiring the scheme (3.60) to be L-stable leads to:

lim
t→−∞

R(t) = 0
(3.61)

which in this case is achieved by imposing:

δ =
36γζ − 9γ + 4ζ2 − 9ζ + 2

3(24γζ − 3γ − 11ζ + 2)
4ζ6 − 104ζ5 − 100ζ4 + 76ζ3 + 5ζ2 − 8ζ + 1 = 0, (3.62)

where the second equation in (3.62) is imposed to simplify the subsequent expressions. The
root chosen for the equation on the right of (3.62) is:

ζ =

√
3− 1

2
, (3.63)
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which leads to the scheme:

0 0
1
3 −1+

√
3

6
3+
√
3

6
1
3

1
3 0

2
3

2+
√
3

3 −1+
√
3

3
1
3

2
3 0 2

3 0

1 0 0 3−
√
3

2

√
3−1
2 1 0 0 1 0

1
8

3
8

3
8

1
8

1
8

3
8

3
8

1
8

(3.64)

The linear stability function of the scheme (3.64) is:

Rm(z) =
(5
√

3− 3)z2 + 12(
√

3− 1)z − 18

(z − 3)(
√

3z2 − 4
√

3z + 6)
, (3.65)

for comparison, the linear stability function of Driscoll’s scheme (3.49) is:

Rd(z) =
7z2 + 12z − 18

2(z − 3)2(z − 1)
. (3.66)

The stability regions of the two methods are compared in Figure 3.1. The stability regions
are remarkably similar for the two methods, and both are concave close to the imaginary
axis, a feature that helps ensuring that a purely imaginary spectrum lies inside the stability
region even after small perturbations of its eigenvalues. Another way to evaluate the relative
performance of the two methods is by highlighting that part of the complex plane where:

|R(z)|
|Rm(z)| > 1, (3.67)

meaning that in the highlighted region the original method by Driscoll is more stable that
the modified method. For the connection between this indicator and the theory of order stars
see [62].

Figure 3.1: Left: stability regions for the two Implicit-Explicit Runge–Kutta
methods with Butcher Tableaus (3.49) (dashed line) and (3.64) (continuous
line). The stability regions are on the exterior part of the curves. Right:

region where |R(z)| ≥ |Rm(z)|, as defined in Equation (3.67)

Finally, it is interesting to inspect the truncation error of the original and of the modified
methods. This is usually done by noting that, for a scheme of order p it holds:

ez −R(z) = Czp+1 +O(zp+2), (3.68)

and consequently, a Taylor expansion of the left hand side of Equation (3.68) confirms that
the numerical methods have order 3, and allows to compare the quality of the scheme by
inspecting the coefficient of the first nonzero term in the expansion. Clearly, it is desirable
for C to be as small as possible. For the original method by Driscoll, the expansion is:

ez −R(z) =
1

24
z4 +

89

1080
z5 +O(z6), (3.69)
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and for the alternative method (3.64) is:

ez −Rm(z) =
2
√

3− 1

72
z4 +

49 + 10
√

3

1080
z5 +O(z6). (3.70)

Consequently, the modified method has indeed order 3 and can rely on an error constant
roughly 20% smaller than the original method.

Non L-stable IMEX Runge–Kutta methods

It is interesting to study which possibilities arise when the L-stability requirement (3.41) is
replaced by a weaker asymptotic stability constraint, namely:

lim
z→−∞

|R(z)| < 1. (3.71)

We repeat the computations described in Section 3.2.1, with the purpose of maximising by
trial and error the stability region of the method. This is an attractive feature both in view of
nonlinear stability and for ensuring a safety region agains perturbations of the linear operator
as in Equation (3.29). This has lead us to the following scheme:

0 0 0 0
1
3 − 7

15
4
5

1
3

1
3 0

2
3

1643
1110 −491

370
19
37

2
3 −13

66
19
22 0

1 0 0 1
2

1
2 1 313

418 −379
418

22
19 0

1
8

3
8

3
8

1
8

1
8

3
8

3
8

1
8

(3.72)

The stability function of the method (3.72) shows that the method is indeed third order:

ez −R(z) =
301

4440
z4 +O(z5), (3.73)

even though the error constant is larger than the schemes (3.49) and (3.64). The difference that
the requirement (3.71) induces on the scheme is well visible on a Nyquist diagram, that consists
in a plot of the image under the map R(z) of the imaginary axis. In Figure 3.2, the Nyquist
plots for the three IMEX-RK methods (3.49), (3.64) and (3.72) are shown. From this plot,
it is clear that the L-stability requirement makes the image of {<z = 0} to pass through the
origin, with a winding number of one. Despite the loss of L-stability, the new method (3.72)
has actually a larger linear stability domain than both methods (3.49) and (3.64), and is less
oscillatory than (3.49) on a large portion of the left half plane, as can be seen from Figure 3.3.

3.2.2 Extrapolation Methods

There exist several strategies to accelerate the convergence rate of an approximating sequence.
For example, Aitken Extrapolation and the Shanks Transformation are popular tools in sev-
eral areas of Approximation Theory, as are usually involved with root finding or fixed point
iterations. A valuable source of information concerning extrapolation methods in the context
of ODEs is [60], and for recent developments regarding the use of extrapolation methods in
the context of parallel-in-time algorithms is [79].

Let us denote with uh(t) the approximate solution, evaluated at time t, of a differential
problem with a numerical method of order p and time step h. Then, the global error expansion
has the form:

u(t)− uh(t) = c1h
p + c2h

p+1 +O(hp+2), (3.74)

where u(t) is the exact solution at time t. The same expression for the same numerical method
with a halved step size, h/2, is:

u(t)− uh
2
(t) = c1

(
h

2

)p
+ c2

(
h

2

)p+1

+O(hp+2). (3.75)
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Figure 3.2: Nyquist plot for the linear stability functions of the three Implicit-
Explicit Runge–Kutta schemes (3.49), (3.64) and (3.72). The two L-stable
schemes (3.49) and (3.64) are clearly identified by the winding number equal
to one. All the three curves are oriented in the counterclockwise direction if

the imaginary axis is transversed from −i∞ to i∞.

Figure 3.3: Left: stability regions for the two Implicit-Explicit Runge–Kutta
methods with Butcher Tableaus (3.49) (dashed line) and (3.72) (continuous
line). The stability regions are on the exterior part of the curves. Right:
the shaded region is defined by the inequality |R(z)| ≥ |Rm(z)|, as in Equa-

tion (3.67).
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Supposing that both approximations uh and uh
2

are actually computed, it is possible to
eliminate the first term on the right hand side from the expansions (3.74) and (3.75) as
follows:

(1− 2p)u(t)− uh(t) + 2puh
2
(t) =

(
1− 1

2

)
c2h

p+1 +O(hp+2), (3.76)

which can be rearranged to give:

u(t) =
2p

2p − 1
uh

2
(t)− 1

2p − 1
uh(t) +O(hp+1). (3.77)

The expression (3.77) is one of the most basic examples of extrapolation techniques to ac-
celerate the convergence rate of a sequence of approximations. In this work, the extrapola-
tion (3.77) with p = 4 is used in combination with the third order scheme (3.64), advanced
with two time steps h and h/2, to extrapolate a fourth order, L-stable scheme.

3.2.3 Composite Implicit-Explicit Runge–Kutta Methods

In his influential paper [37], Driscoll made a clever observation which allowed him to preserve
the good stability properties of third order IMEX-RK methods while improving (3.49) almost
to fourth order.

The idea of Composite methods, introduced first in [51] in the context of multistep meth-
ods, consists in dividing the Fourier modes in (at least) two regions: “fast” modes and “slow”
modes, depending on the magnitude of the linear operator associated to each mode. High-
frequency modes are those responsible for the stiffness of a time advancement problem, so
these should be treated with an implicit method in order to avoid an excessively restrictive
stability condition on the time step. Conversely, low-frequency modes do not require such
a strong stability constraint. Moreover, if the solution is sufficiently smooth, its Fourier
coefficients will decay very fast, so only a small fraction of the total energy resides in the
high-frequency modes.

Such considerations lead to the idea of a “composite” method, which takes advantage
of explicit, high order methods for advancing the highly energetic but nonstiff slow modes,
combined with an L-stable, diagonally implicit, but lower order method for advancing the
stiff but low energy fast modes. In principle, it is possible to construct Composite methods
by choosing (at least) two methods for the fast and slow frequencies, which in turn could take
advantage of different methods for the linear and nonlinear parts, as done in IMEX methods.

Driscoll proposed a Composite Runge–Kutta method by combining the L-stable, third
order method (3.49) for the fast modes with the explicit, fourth order method on the right
hand side of the Tableau (3.49) for the slow modes. As for the distinction of fast and slow
modes, Driscoll proposed simply to consider as slow all those modes for which the product of
time step and linear operator fits within the stability region of the explicit method:

h|Lj | ≤ 2
√

2, (3.78)

where 2
√

2 is the stability ordinate for any explicit Runge–Kutta method of order 4.
For the IMEX-RK method (3.64), it is possible to check that the nonlinear part is advanced

only with a method of order 3. Indeed, the stability function for the nonlinear method is:

Rn(z) = 1 + z +
z2

2
+
z3

6
+
z4

36
, (3.79)

from which it follows that:

ez −Rn(z) =
z4

72
+O(z5), (3.80)

and since the coefficient of the term z4 is nonzero, the method is only third order. For the
nonlinear part of scheme (3.72), the stability function is:

R(z) = 1 + 1 +
z2

2
+
z3

6
+
z4

24
, (3.81)
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with expansion:

ez −R(z) =
z5

120
+O(z6), (3.82)

confirming that the method has indeed order four. For these reasons, the schemes (3.64)
and (3.72) cannot be employed as they are for the construction of a Composite method, but
need to be supplemented by an explicit method of order at least 4, for the slow unknowns.

An explicit Runge–Kutta method suitable for extending the IMEX scheme (3.64) to a
Composite method needs, in addition of being high order, to comply with the choice made
for the coefficients bi and ci. This is required both to reduce the code complexity and to have
a good starting point for the construction of more sophisticated schemes. The general form
for the “slow” method is:

0
1
3

1
3 0

2
3 a31 a32 0

1 a41 a42 a43 0
1
8

3
8

3
8

1
8

(3.83)

To simplify the notation, two of the coefficients will be renamed as a32 = γ and a43 = δ. The
conditions up to order 3 give:

0
1
3

1
3 0

2
3

2
3 − γ γ 0

1 3γ + δ − 3 4− 3γ − 2δ δ 0
1
8

3
8

3
8

1
8

(3.84)

The stability function for the scheme of Tableau (3.84) is:

Rs(z) = 1 + z +
z2

2
+
z3

6
+

1

24
γδz4, (3.85)

and from the series expansion:

ez −Rs(z) =
1

24
(1− γδ) z4 +

1

120
z5 +O(z6) (3.86)

it is clear that the method has order 4 if and only if:

γδ = 1. (3.87)

There is one free variable, so a possible choice to simplify the expressions is γ = 1. The
resulting scheme coincides with a fourth order method that was derived by Kutta himself
(see [24] for the history of Runge–Kutta methods), sometimes called “the 3/8-rule”:

0
1
3

1
3 0

2
3 −1

3 1 0

1 1 −1 1 0
1
8

3
8

3
8

1
8

(3.88)

Written down explicitly, the Composite method reads:

un+1 = un +
1

8
h
[
F(k1) + 3F(k2) + 3F(k3) + F(k4)

]
, (3.89)
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with

k1S = un (3.90)

k1F = un (3.91)

k2S = un +
1

3
hF(k1) (3.92)

k2F =

(
1− 3 +

√
3

6
hL

)−1(
un + h

(
−1 +

√
6

6
Lk1F +

1

3
N(k1)

))
(3.93)

k3S = un +
2

3
h

(
F(k2)− 1

3
F(k1)

)
(3.94)

k3F =

(
1− 1

3
hL

)−1(
un + h

(
2 +
√

3

3
Lk1F −

1 +
√

3

3
Lk2F +

2

3
N(k2)

))
(3.95)

k4S = un + h
(
F(k3)− F(k2) + F(k1)

)
(3.96)

k4F =

(
1−
√

3− 1

2
hL

)−1(
un + h

(
3−
√

3

2
Lk3F + N(k3)

))
(3.97)

(3.98)

and {
ki := kiF if h|L| < 2

√
2

ki := kiS if h|L| ≥ 2
√

2
F := L + N. (3.99)

A similar strategy is used to set up Composite methods based on the scheme (3.72) for the
high frequencies, combined with (3.88) for the low frequencies.

3.3 Numerical accuracy validation

The quality of the numerical solution is validated in two ways. First, the space resolution is
checked by inspecting the magnitude of Fourier coefficients. Secondly, the time resolution is
checked by inspecting the numerical conservation of the L2 norm, which is an integral of the
motion.

Definition 3 (Space criterion). If any Fourier coefficient with magnitude greater than the
machine epsilon (' 10−16 in double precision floating-point arithmetic) lies outside the current
resolution (after filtering, if applied), the computation is rejected.

This criterion may seem to be not very practical, since the coefficients outside resolution
are unknown. A possible workaround is to check that for all l = 0, . . . , N −1, the curves |ûNjl |,
seen as functions of j, decrease down to machine epsilon within the available resolution (i.e.
for j ≤ N − 1). In order to comply with the second requirement, we check the conservation
of the L2 norm. In Spectral Methods, the L2 norm is particularly simple to compute, thanks
to Parseval’s theorem:

‖u‖2L2 =

N/2−1∑
j,k=−N/2

|ujk|2, (3.100)

and the numerical results are deemed acceptable according to the following criterion.

Definition 4 (Time criterion). Provided that the space criterion of Definition 3 holds, the
numerical solution is acceptable as long as the L2 norm of the numerical solution is conserved
up to a given tolerance tol. In practice, this latter requirement is computed as:∣∣∣∣∣∣∣1−

(∑N/2+1
j=−N/2

∑N/2+1
k=−N/2 |ujk|2

) 1
2

‖u(x, y, t = 0)‖L2

∣∣∣∣∣∣∣ ≤ tol. (3.101)
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Table 3.1: Main features of the time integration schemes considered for the
comparison of Section 3.4.

short name order details

DIRK3 3 L-stable Diagonally-implicit RK used in [37]
IERK3L 3 L-stable Implicit-Explicit RK method of Table (3.64)
IERK3W 3 non L-stable Implicit-Explicit RK method of Table (3.72)
CDIRK3 3÷ 4 Driscoll’s Composite RK method [37]

CIERK3L 3÷ 4
Composite method based on the IERK3L,
with slow-fast splitting (3.105)

CIERK3W 3÷ 4
Composite method based on the IERK3W,
with slow-fast splitting (3.105)

EIERK3W 4 Extrapolation method based on IERK3W

For the present work the tolerance adopted is tol = 10−5.

3.4 Comparison

A natural choice to compare the performance of the numerical methods described in the
previous sections and summarized in Table 3.1, is to evolve numerically an exact, periodic
solution of the KPI Equation. In principle there are many possible choices, such as line
solitons, cnoidal waves, lumps, or explicit solutions given in terms of theta functions on a
Riemann surface. However, each of these solutions has its own disadvantages such as trivial
depedence on y (line solitons, cnoidal waves), algebraic decrease at infinity (lumps), or an
involved explicit representation (theta functions). All these considerations reduce the number
of “practical” exact solutions. One possibility, considered also in the works [81], [109] is the
Zaitsev solution [119]:

u(ξ, y) = 2α2 (1− β cosh(αξ)) cos δy

coshαξ − β cos δy
, (3.102)

with parameters given by:

ξ = x− ct c = α2 4− β2
1− β2 δ = α2

√
3

1− β2 . (3.103)

In [81, 109], the Zaitsev solution is the basis for a comparison of two Exponential Time
Differencing schemes (the fourth order methods by Cox and Matthews [34] and Krogstad [90]
and the fifth order method by Ostermann [95]), a fourth order Integrating Factor Runge–
Kutta, and Driscoll’s Composite Runge–Kutta scheme (3.49).

For the numerical test, the parameters chosen are:

α = 1 β =
1

2
(3.104)

and the solution is evolved up to time t = 2. In [83] the authors show that Zaitsev’s solution
is unstable, however the numerical method is sufficiently accurate to guarantee that the un-
avoidable roundoff perturbations do not grow significantly up to t = 2. The computational
domain is [−5π, 5π]× [0, 10π] and the number of Fourier coefficients in the two directions are
respectively 211 and 29, for a total of 1 048 576 unknowns. Zaitsev’s solution changes rela-
tively slowly in both directions, so the grid 211× 29 is sufficient to comply with the resolution
requirements discussed in Section 3.3, namely that all the Fourier coefficients with magnitude
greater than the smallest representable number in double precision floating-point arithmetic
are represented. The space discretization and resolution is the same for all the time advancing
schemes considered here. The computations are performed on 32 Intel Xeon E5-2640 cores,
and the results are available in Figure 3.4. On Figure 3.4 (left), the L2 norm of the error is
shown as a function of the time step size h.
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On Figure 3.4 (right), the same L2 norm of the error is plotted as a function of the total
computational time. All of the methods seem to achieve only third order accuracy, which
probably reveals some form of order reduction phenomenon, that requires further investiga-
tion. However, for the Extrapolation Method the error constant is clearly smaller, and as a
result the error for a fixed time step is constantly one order of magnitude smaller than the
IMEX methods. Despite this, the higher number of operations required by the Extrapolation
method does not yield any advantage when compared in terms of actual computational time.
The three implicit-explicit methods seem to behave similarly, with the original DIRK3 that
proves to be effective across a larger region of time steps sizes, that are precluded to the
other methods. The composite methods, despite failing to achieve fourth order accuracy in
this test, are certainly the most effective, but Driscoll’s original Composite method seems to
be stable only for very small time step sizes. The reason for this behaviour is unclear and
deserves further investigation. The stability of composite methods can be greatly improved if
the slow-fast splitting (3.78) is modified as:

h|L| ≤ 2
√

2

15
, (3.105)

which is not justified rigorously, but by trial and error seems to be a good compromise,
as testified by the greatly improved stability of the two composite methods CIERK3L and
CIERK3W.
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Figure 3.4: Error size measured in the L2 norm as function of the time
advancement step h (left) and as function of the computational time (right)
required on 32 cores for a problem with approximately 1 million unknowns.

Despite the obstruction to fourth order convergence rate, it is still convenient to exploit
composite Runge–Kutta methods, due to their stability region about as large as DIRK Meth-
ods, but with errors smaller by two orders of magnitude for a fixed time step size.

We conclude the chapter with a comment on the energy distribution between the two
frequency regions of a Composite Runge–Kutta method. To this end, a suitable numerical
test consists of a run with ε = 0.1 and resolution 213 × 213. The computation is performed
until t = 1, for three time step values: h = 10−4.1, h = 10−4.7 and h = 10−5.1. For each value
of the time step, the energy distribution between fast and slow wavenumbers is computed and
the time evolution of this ratio is shown in Figure 3.5. Initially, the solution is well described
by a relatively small number of Fourier components, and practically all of the energy is stored
in the slow modes. After some time, the first lump appears, redistributing some of the energy
from the slow to the fast modes. This can be seen by the sharp drop in the slow energy ratio
at t ' 0.15 in Figure 3.5. For longer times, the lump interacts with the dispersive waves re-
entering the domain through the periodic boundaries, and this introduces some further energy
exchange between slow and fast modes, corresponding to the oscillations between t ' 0.6 and
t ' 1 in Figure 3.5. Despite of the lump formation and the relative energy increase in high-
frequency components, more than 99% of the energy lies in the low-frequency modes. This
test provides further justification to the application of Composite methods (even if with a
different partition threshold) to purely dispersive PDEs, since it shows that the vast majority
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of the energy is evolved with a fourth order method.
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Figure 3.5: Fraction of the L2 norm lying in the slow modes for the Composite
Runge–Kutta Method based on the scheme (3.72) for the fast modes, and
on the scheme (3.88) for the slow modes. The two cases with h = 10−4.7

and h = 10−5.1 are plot with the same line style since these would not be
distinguishable anyways.
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Chapter 4

Parallel Implementation

In this work, numerical methods are considered as a complementary tool to Whitham’s theory
for the study of dispersive shock wave formation and propagation in the KPI Equation. Fourier
Spectral Methods provide uniform resolution throughout the spatial domain. As soon as the
solution develops a region of high frequency oscillations in a small part of the domain, such
oscillations can be faithfully represented at the cost of introducing a very large number of
(collocation or quadrature) points even in regions where the solution is changing slowly, which
usually cover most of the domain. Nevertheless, it is possible to tolerate this burden to a large
extent thanks to the availability of highly efficient algorithms with computational complexity
of O(N logN), where N is the number of Fourier modes, or equivalently the number of grid
points, retained by the approximation method.

However, when studying the small dispersion case, (ε� 1), the number of Fourier modes
required for an acceptable computation1 grows rapidly, and already for 211 × 211 points the
memory required by the solution is

8 · 222b = 32Mb, (4.1)

which is enough to induce a high number of cache misses in most modern CPU architectures,
with a noticeable deterioration in the computational efficiency. Considering the fact that for
ε = 1

10 , at least 213 × 214 points are required, it follows that at least

8 · 227b = 1Gb, (4.2)

are required for a case that can hardly be considered in the small dispersion regime.
This situation, intertwining algorithmic and hardware capacity considerations, is typical

for a wide range of problems in Scientific Computing. Since the late 1990s [35], the approach
of hardware manufacturers relies on providing clusters with a large number of cpu cores, and
to encourage programmers to distribute their computations among hundreds or thousands
of cores, so that each core contributes only to a small chunk of the computation, which
becomes a concerted effort. As for the cpu cores, the memory too is distributed among many
nodes, and even if memory bandwidth is not increasing dramatically, the replication of many
independent cpu-memory units still makes it possible to achieve a very high throughput.
Clearly this approach has some drawbacks, notably the time required to transfer data on a
network connecting the nodes and the additional requirement of designing and maintaining
a more complex code, where memory distribution and data sharing are much more difficult
tasks than in a standard serial code.

4.1 Parallel Strategies

In a Fourier pseudospectral code, the relevant information possesses naturally a tensor product
structure. Specifically, the Fourier coefficients ûNjl of the approximate solution can be thought
of as the integer points in a lattice of dimension N1×N2, where N1,2 are the number of Fourier
basis in each direction. A similar consideration holds for the values of the approximate solution
at the physical grid points, uNjl , and for the structure of the linear operator L. A consequence
of this simple data structure is that the task of distributing the information between a certain

1in view of criteria 3 and 4.
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number of cores is straightforward, as opposed to other discretization schemes for PDEs (such
as Finite Element Methods) which rely on a triangulation of the computational domain, that
in turn requires the programmer to deal with much less strucured data sets.

In this context, the most natural choice for distributing the computation between m cpus
is that of dividing the square domain in slabs and assigning a slab to each core, as shown in
Figure 4.1 (left). Despite the simple implementation, this choice has the intrinsic limitation
that while the amount of memory required grows linearly with the number of modes N (that
as a first approximation are supposed to be equally distributed in the two directions), the
maximum number of allowed cores grows only as N1/2. Furthermore, the slab partitioning
requires a global (also called all-to-all) inter-core communication for each 2D Discrete Fourier
Transform, as shown in Figure 4.1 (right).

0 1 2 3

Figure 4.1: Left: slab data distribution for a parallel Fourier pseudospectral
code. The Fourier coefficients, the values at the gridpoints and the Fourier
representation of the linear operator are distributed by dividing the domain in
slabs along one of the two directions. The number within each slab denotes
the id (or rank) of each of the 4 cpus. Right: communication pattern required
to compute a 2D Discrete Fourier Transform in the slab distribution. The
matching colors need to be exchanged between the respective owners. It is
clear that the transposition requires that each cpu communicates with every

other cpu, leading to an all-to-all communication pattern.

An alternative to the slab partition is the pencil partition, shown in Figure 4.2 (left). In
this case the data is more localised, it is possible to scale the number of cpus linearly with N ,
as opposed to N1/2 of the slab configuration, and there is no need of global communication, as
shown schematically in Figure 4.2 (right). Some disadvantages of the pencil configuration are
the greater code complexity and the lower performance of 1D FFTs on shared data (this second
aspect could be partly overcome by using hybrid MPI-OpenMP programming techniques). For
a two-dimensional code, usually the burden of the higher code complexity is not rewarded
by a significantly higher performance, so the slab strategy is preferred in this work. This
perspective is completely different for the case of massively parallel 3D computations, which
lead in recent years to the development of several FFT libraries tailored specifically to simplify
the pencil-like decomposition [106, 92, 39].

There exist strategies for parallelising the time advancement part of the computation. An
intuitive way to parallelise an extrapolation method would be that of assigning the coarse
and the fine parts of the computation to two distinct cpu cores. In the case of a computation
which is parallel both in space and time, this “stage-parallel” approach would require to
set up two communication grids that are called by the FFT routines. This in turn would
dramatically complicate the use of efficient hybrid MPI/openMP parallelization strategies,
since a subthread would need to be part of an MPI communicator. In addition, since the
fine solver would require twice the work of the coarse solver, it would be difficult to ensure
a proper load balancing between cpus, with a concrete risk that as many as half of the cpus
spend half of their walltime idle.

As a consequence of these difficulties with stage-parallel time integrations, over the last
20 years there have been remarkable developments on step-parallel time stepping schemes,
the most popular being the Parareal algorithm [94] with its variants [74], parallel versions
of the Spectral Deferred Correction method [30], and hybrid Parareal–Deferred Correction
schemes [47]. Such methods however are not considered here, since it will be clear from the
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0 1

2 3

Figure 4.2: Left: pencil data distribution for a parallel Fourier pseudospectral
code. The Fourier coefficients, the values at the gridpoints and the Fourier
representation of the linear operator are distributed by dividing the domain
in subsquares along each direction. The number within each square denotes
the id (or rank) of each of the 4 cpus. Right: communication pattern required
to compute a 2D Discrete Fourier Transform in the pencil distribution. The
matching colors need to be exchanged between the respective owners. In this
case the transposition requires that only the cpus 1 and 2 exchange data.

scalability results that this additional level of parallelism is not needed as long as the space
parallelism is not being fully exploited.

4.2 Code structure

The code structure at large is composed of the following fundamental operations:

1. initialise the MPI communication grid, allocate and initialise memory;

2. start the time stepping cycle:

i. advance and update the solution;
ii. check numerical accuracy according to criteria 3 and 4;
iii. compute some relevant quantity or output data to disk;

3. finalise MPI and deallocate memory.

In a typical computational code, it is expected that the time stepping cycle requires far more
cpu time than the initialisation and finalisation tasks. The remaining operations are distin-
guished between operations that can be performed independently on each cpu and operations
that require some data exchange between cpus. Checking the numerical accuracy requires two
calls (one for checking mass conservation, and one for the inspection of the Fourier coefficients)
to the MPI_Reduce primitive, which amounts to an all-to-one communication; advancing for
a single time step the numerical integrator requires 2 MPI_Alltoall collective calls (required
by the Discrete Fourier Transform) for each stage of the Runge–Kutta scheme. As a result,
for each time step there are 8 all-to-all calls followed by two all-to-one calls. By checking the
numerical accuracy e.g. once every 10 time steps, the time spent on this operation can be
minimised, and all the algorithmic efforts can be directed at the optimisation of the Runge–
Kutta stages. The typical time marching step for a high order Runge–Kutta scheme is shown
schematically in Algorithm 1. From the Algorithm, it is clear that each time step requires 8
Fourier Transforms and 10 MPI collective communications.

It is possible to identify three code blocks that are likely to consume a rather large amount
of computational power, as described below.

• Fast Fourier Transforms (and the underlying inter-processor communications). This
operation is outsourced to the FFTW [53] library, so the only possibility for optimisation
is to reduce, if possible, the number of calls to the library.

• A routine for computing the nonlinear term on the physical grid. The related loop
involves the same operations for all of the Runge–Kutta stages, and are executed by a
subroutine called update_nonlinearities.
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• A routine for computing the intermediate solutions k̂l in Fourier variables. In this case,
the operations required at each stage differ significantly and must be treated separately.
The subroutines devoted to this computation are called update_stage_i in the code,
with i ranging from 1 to the number of stages s. The solution update at the end of the
time step (step 17 in Algorithm 1) is realised by a subroutine called update_solution.

4.3 Scalability and profiling

Current cpu architectures are sufficiently complex that a reliable a-priori estimate of the
computational time required by each subroutine is practically out of reach. In particular,
the complexity level of a modern cpu makes the linear dependence between operation count
and computational time obsolete. It is pointless to optimise a certain part of the code based
only on considerations related to the number of operations involved. During the development
phase of a modern computational code it is necessary to include a profiling phase to check
where the computational time is spent and, if possible, to devise new strategies for the parts
of the code that the profiler has marked as more resource-intensive.

There exist several high-quality tools for profiling MPI-parallel codes, such as hpctoolkit [12],
scalasca [99] and the tau performance system [114], which are capable of returning remark-
ably detailed information about the time spent by each process on every part of the code. To
obtain simpler, less detailed profiling information, a good option comes fron the MPI_Wtime
directives, that are used in the following for measuring the time required by the main com-
putational blocks in the code.

4.3.1 Strong scalability on Ulysses

We start with a scalability analysis on SISSA’s inhouse cluster, Ulysses. Each computational
node on Ulysses consists of two Intel Xeon E5-2640 CPUs, for a total of 12 physical cores and
24 virtual cores per node. The scalability analysis considered here consists in a run on a grid
with 213×213 points, which correspond roughly to 67 million unknowns, for ε = 0.1, a timestep
h = 10−4 and for a total of 1000 timesteps. This computation is repeated several times, from
16 up to 512 cpu cores. Since 16 threads are run on every node, arguably some of the cores are
running two threads, while the others are probably running a single thread. Despite of this
expected imbalance, the cpu manufacturer claims that running a larger number of threads,
even if executing on virtual cores, is preferrable to running a smaller number of threads
on physical cores only. During each run, the time spent on each routine by every process is
measured using MPI_Wtime. This kind of scalability test is called strong scalability test because
the total number of degrees of freedom is fixed. Conversely, a weak scalability test consists in
fixing the number of degrees of freedom per process, so that the total number of unknowns
grows with the cpu count. The former case is the one that mimics more closely the actual
practice, and is considered a stricter test for the parallel performance of a code. The results
of the strong scalability test are shown in Figures 4.3 and 4.4. From the graphs of Figure 4.3,
it is clear that the code scales almost perfectly up to 128 cores, but a further upscaling to 256
and 512 cores, despite still providing a remarkable saving in terms of computational time, is
quite off from the ideal scaling line. This behaviour is puzzling; we speculate that it may be
attributed to the faulty setup of Ulysses’s network interface, as confirmed by some warning
messages related to the failure of the TCP connection to a node when 256 or more cpu are
used. This however requires further investigation, as this slowdown could be attributed to the
network topology design, that may induce a reduction in the average number of Infiniband
connections between nodes when the number of nodes is sufficiently high. In the plots of
Figure 4.4, the relative importance of the main subroutines is shown as a function of the
core count. This plot is of fundamental importance in guiding the optimisation process: the
cycle for computing the nonlinear term in the spatial grid requires an overall 15% of the
total computational time, and the Fourier transform subroutines take 80% of the time. The
cycles for computing the intermediate stages and for the final summation in frequency space
contribute to less than 1% of the computing time. Since the Fourier transform is outsourced
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Algorithm 1 Operations involved in a typical explicit 4-stage Runge–Kutta integrator. For
an implicit-explicit Runge–Kutta and a Composite Runge–Kutta method the main steps are
fundamentally the same, with a different expression to take into account the linear-nonlinear
and slow-fast splitting.
1: procedure Explicit Runge–Kutta step
2: k1 = F−1(ûn)
3: for i, j = 1, . . . , N do

N1
ij = N(k1ij)

. Computes the nonlinear term on the physical grid based on the solution at the
previous time step

4: N̂
1

= F(N1)
5: for i, j = 1, . . . , N do

k̂2ij = ûnij + ha21

(
L̂k̂1ij + N̂

1

ij

)
. Second stage

6: k2 = F−1(k̂2)
7: for i, j = 1, . . . , N do

N2
ij = N(k2ij)

8: N̂
2

= F(N2)
9: for i, j = 1, . . . , N do

k̂3ij = ûnij + h
2∑
l=1

a3l

(
L̂k̂lij + N̂

l

ij

)
. Third stage

10: k3 = F−1(k̂3)
11: for i, j = 1, . . . , N do

N3
ij = N(k3ij)

12: N̂
2

= F(N2)
13: for i, j = 1, . . . , N do

k̂4ij = ûnij + h

3∑
l=1

a4l

(
L̂k̂lij + N̂

l

ij

)
. Fourth stage

14: k4 = F−1(k̂4)
15: for i, j = 1, . . . , N do

N4
ij = N(k4ij)

16: N̂
4

= F(N4)
17: for i, j = 1, . . . , N do

ûn+1
ij = ûnij + h

4∑
l=1

bl

(
L̂k̂lij + N̂

l

ij

)
. Solution update
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to a highly optimised library, it follows that any optimisation effort is best spent in trying to
improve the efficiency of the nonlinear subroutine. In the second plot, Figure 4.4, the puzzling
asymmetry in computational time between forward and backward Fourier transforms in the
runs with 256 and 512 cores is even more clearly visible.
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Figure 4.3: Results of the strong scalability test with '67 million unknowns.
The dashed line denotes the ideal case for which the computational time is
proportional to the inverse of the core count. The processors are Intel Xeon
E5-2640 and the compiler is the GNU Compiler, version 6.2.0 with OpenMPI

2.0.0.

It is interesting to study more in detail the time spent by each process on a given subrou-
tine, and comparing it with the time spent on average by the other processes. This information
is shown in Figures 4.5 and 4.6, for the three performance-critical subroutines.

In case of an ideal scaling, the average values (marked with the dashed lines) would divide
the plotting area in four horizontal stripes with equal area. The aberrant behaviour for the
case with 256 processes is clearly visible from these plots. It is interesting to observe that for
the update_nonlinearities subroutine, the time required is more or less equally distributed
between all the processes, while for the FFT routines this is not the case. We suspect again
that this behaviour is related to network installation errors. The fact that the computational
times required by the update_nonlinearities subroutine are quite balanced between the
processes in Figure 4.5 suggests that there is little that can be done on the communication
part of the implementation, and that the optimisation effort must be directed to the purely
computational part of the subroutine.

To this end, let us write down explicitly the two lines of C code that absorb 15% of the
total computational time:

1 for (ptrdiff_t i=0; i<N; i++)
2 nn[i] = cpow(creal(u[i]), 2)/2.;

where u is an array of dimension N that stores the grid values of the numerical solution and
nn is an array with the grid values of the nonlinearity u2/2. The code is compiled with the
GNU Compiler, version 6.2.0 and OpenMPI version 2.0.0. The optimisation flag used is -O3.
Both u and nn are arrays of complex numbers, but since the solution is real, if the software is
running correctly these should contain complex values with imaginary part equal to zero, or
very small anyways. For this reason, it may be worthwhile to test the following alternative:
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Figure 4.4: Results of the strong scalability test with '67 million unknowns.
In this plot, each line shows the fraction of the total time taken up by the
subroutines described in the legend. The processors are Intel Xeon E5-2640
and the compiler is the GNU Compiler, version 6.2.0 with OpenMPI 2.0.0.

0.0 0.2 0.4 0.6 0.8 1.0

cpu rank/size

103

104

ti
m

e
(s

)

update nonlinearities

32

64

128

256

512

Figure 4.5: Time required by the update_nonlinearities subroutine for all
the processes, for the number of cores shown in the legend. The dashed line

correponds to the average value.

0.0 0.2 0.4 0.6 0.8 1.0

cpu rank/size

103

ti
m

e
(s

)

forward fft

32

64

128

256

512

0.0 0.2 0.4 0.6 0.8 1.0

cpu rank/size

103ti
m

e
(s

)

backward fft

32

64

128

256

512

Figure 4.6: Time required by the forward_fft (left) and backward_fft
(right) subroutines for all the processes, for the number of cores shown in the

legend. The dashed line correponds to the average value.



68 Chapter 4. Parallel Implementation

1 for (ptrdiff_t i=0; i<N; i++)
2 nn[i] = u[i]*u[i]/2.;

in the hope that since two function calls are avoided, it may enable the compiler to generate
a better performing executable. Also, the variable u is qualified as restrict, to suggest the
compiler that there is no pointer aliasing in this subroutine, and further compiler optimisations
may be enabled. Replacing the first loop with the second one, we measured a reduction
to almost a third of the average computational time for running each loop, with compiler
optimisations disabled. However, as soon as compiler optimisations are turned on, there is a
very mild difference in the execution time between the two loops.

Alternatively, following the guidelines in [71, 67], it may be worthwhile to directly use
the arithmetic functions provided in the Intel Advanced Vector Extensions (AVX). The AVX
instruction set takes advantage of the vectorised nature of modern Intel cpus to process 4
double precision entries for each clock cycle. Formally, in the previous loop only a single
double precision number is processed at each clock cycle, and we checked by inspecting the
disassembled code that there are no compiler optimisations which take advantage of the AVX
instruction set. We rewrite the same loop with AVX extensions2 as follows:

1 for (ptrdiff_t i=0; i<N; i+=4)
2 {
3 __m256d u0 = _mm256_loadu_pd (( double *)u);
4 __m256d u2 = _mm256_loadu_pd (( double *)(u+2));
5 __m256d ur = _mm256_unpacklo_pd(u0, u2);
6
7 __m256d tr = _mm256_mul_pd(ur, ur);
8 __m256d ti = _mm256_setzero_pd ();
9
10 __m256d s0 = _mm256_shuffle_pd(tr , ti, 0b0000);
11 __m256d s2 = _mm256_shuffle_pd(tr , ti, 0b1111);
12
13 _mm256_storeu_pd (( double *)nn, s0);
14 _mm256_storeu_pd (( double *)(nn+2), s2);
15 }

After some testing, it was found that the compiler can automatically vectorise the second of
the three loops if the flags -ftree-vectorize -mavx -march=native -ffp-contract=fast
are specified.

The scaling results with the new optimised loop are shown in Figures 4.7 and 4.8. The
most striking result of the optimised code is the dramatic reduction in time spent by the
update_nonlinearities subroutine, which after optimisation takes slightly more than 1% of
the total time. As a result, computational times have decreased considerably, in many cases
by more than half (see the results in Table 4.1), and more than 90% of the computational
time is spent in taking Fourier transforms.

4.3.2 Strong scalability on Marconi

Our experience with the Ulysses cluster is that medium sized computations, with grids up to
215×215 (' 1 billion) points, can be run at a satisfactory performance. However, for very large
scale computations, the time required to perform a long-time simulation is unacceptable. For
this reason, we decided to perform our very-high resolution computations on a Tier-0 machine,
namely the Marconi cluster at CINECA. The Marconi cluster consists of three partitions,

2in this case, the loops computes as output just u2, and not u2/2. The division by 2 is performed later,
when the x-derivative is applied in Fourier variables. The reason for this slight difference is that AVX intrinsics
do not provide an instruction to perform multiplication and division by 2 within a single clock cycle.
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Table 4.1: Results of the strong scalability tests on the problem with 67
million unknowns run on the Ulysses cluster. The comparison is between the
naive implementation and the loops hand tuned using Intel AVX intrinsics.

The compiler is GNU 6.2.0 with OpenMPI 2.0.0.

cpus time without AVX (s) time with AVX (s) % speedup

16 21637 12106 44
32 10990 5691 48
64 5935 2906 51
128 3149 1523 52
256 2302 985 57
512 995 443 55
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Figure 4.7: Results of the strong scalability test with '67 million unknowns
for the optimised loop using AVX instructions. The dashed line denotes the
ideal scaling that would happen if the computational time were scaling exactly
as the inverse of the core count. The processors are Intel Xeon E5-2640 and
the compiler used is the Intel Compiler, version 14.0 with OpenMPI 1.8.3.
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named A1, A2, and A3. The typical node of the first partition (which will be also referred to
by the commercial name of Broadwell) consists of a single Intel Xeon E5-2697 v4 processor,
with 18 cores and 36 threads, and 126Gb of volatile memory. The second partition takes
advantage of the Intel Xeon Phi 7250 accelerator (which in the following will be referred to
with the commercial name of Knights Landing, or KNL), providing 68 cores per node with
96Gb of volatile memory and 16Gb of dedicated high-bandwidth cache memory. The third
partition is equipped with two Intel Xeon 8160 per node, which offer 48 cores per node. This
latter partition is not used in the present work.

Due to the several possible hardware choices, the scalability analysis on Marconi consists
in two parts: a first part to test the scalability of our code under Intel Xeon CPUs and a
second part to test the scalability under Intel KNL accelerators. Both partitions can take
advantage of Intel AVX instructions, which are exploited as described in Section 4.3.1 In
addition, the KNL cards have even more vectorisation capabilities thanks to the support of
AVX512 directives. These latter directives do not require any change in the AVX code, and to
enable the automatic conversion from AVX to AVX512 instructions it is sufficient to provide
the Intel compiler with the flags -O3 -axMIC-AVX512.

The two tests on Marconi consist of a strong scaling on the Broadwell and then on the
KNL partitions with 216 × 216 Fourier modes, corresponding roughly to 4 billion unknowns.
In both cases, the compiler is the Intel Compiler, version 18.0.3 with IntelMPI version 2018,
update 3.

The scaling results on the Broadwell partition are shown in Figures 4.9 and 4.10. Code
scalability is almost ideal from 256 to 2048 cores, but slows down significantly at 4096 cores.
The reason for this less than optimal performance with 4096 cores seems to lie in the last two
summation stages in the Runge–Kutta integrator. Such summation loops are indeed quite
complex, since a relatively large number of sums coming from different arrays are involved.
However, these summation loops did not have scalability issues in the very similar Intel
Xeon E5-2670 cpus used for the test on the Ulysses cluster. Moreover, each of the last two
summation loops is requiring on average 15% of the computational time on Marconi Broadwell,
while on Ulysses these loops required less than 5% combined. Repeating the scalability test on
the Broadwell partition with the GNU C compiler, version 6.1.0 and OpenMPI version 1.10.3,
the abnormal behaviour of the last two loops disappears. In this work the Intel compiler is
nevertheless preferred over the GNU compiler, due to its ability to generate significantly more
efficient code, and to the errating behaviour of the scalability tests performed with the GNU
compiler. This behaviour is puzzling, and deserves further investigation. The other parts of
the code, including the Fourier Transforms provided by the library, are scaling very well.

Despite of the less than optimal scalability with very large core counts, still for large scale
computations it is convenient to exploit as many cores as possible. This is revealed by the fact
that the advancement of 50 time steps for a problem with 4 billion unknowns takes roughly
500 seconds, or 10 seconds per time step, on 4096 cores. On 256 cores, this same computation
requires roughly 6000 seconds, or 120 seconds per time step. Since the expected number of
time steps for a long-time simulation is of the order of 2·104, this means that a high resolution,
large scale computation can be completed in 55 hours (of “human” time, equivalent to 225000
cpu hours) on 4096 cores, while the same computation would require 667 hours (equivalent
to 170000 cpu hours) on 256 cores. We let the reader ponder on the relative value of human
time and cpu time.

The scaling results on KNL accelerators are available in figures 4.11 and 4.12. In this
case, the scaling is almost ideal from 1024 to 4096 cores, then the trend departs considerably
from the inverse proportionality with respect to core count when passing from 4096 to 8192
cores. As for the Broadwell test, the last two summation loops of the Runge–Kutta integrator
are requiring a much larger share (15% each) of the total time than what was observed in
the Ulysses cluster. However, on the KNL partition all components of the time integrator,
including the demanding loops of the last two stages, scale perfectly up to 8192 cores. In
contrast, the Fourier Transforms show a less than optimal scalability in the final part of the
test.

In Table 4.2, we compare the performance of regular Xeon cpus and Xeon Phi accelerators,
by keeping fixed the number of nodes. A comparison based on the node count has sense from
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Figure 4.8: Results of the strong scalability test with '67 million unknowns
for the optimised loop using AVX instructions. In this plot, each line shows
the fraction of the total time taken up by the subroutines described in the
legend. The processors are Intel Xeon E5-2640 and the compiler used is the

Intel Compiler, version 14.0 with OpenMPI 1.8.3.

256 512 1024 2048 4096

cpu count

100

101

102

103

ti
m

e
(s

)

Timing breakdown

update stage 2

update stage 3

update stage 4

update solution

forward fft

backward fft

total

update nonlinearities

ideal

Figure 4.9: Results of the strong scalability test with '4 billion unknowns
on the Marconi Broadwell partition. The dashed line denotes the ideal case
where the computational time is proportional to the inverse of the core count.
The processors are Intel Xeon E5-2697 v4 and the compiler used is the Intel
Compiler, version 18.0.3 with the Intel MPI Library, version 2018, update 3.
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Figure 4.10: Results of the strong scalability test with '4 billion unknowns
on the Marconi Broadwell partition. In this plot, each line shows the fraction
of the total time taken up by the subroutines described in the legend. The com-
putations are performed on Intel Xeon Phi 7250 accelerators and the compiler
used is the Intel Compiler, version 18.0.3 with the Intel MPI Library, version

2018, update 3.

Table 4.2: Time required for a computation with 4 billion unknowns on the
Marconi cluster. The performance of Broadwell and KNL chips is compared
by equating the number of nodes (each node hosts 32 Broadwell cores and 64

KNL cores).

nodes Broadwell cores Broadwell time (s) KNL cores KNL time (s)

16 512 2318 1024 2043
32 1024 1236 2048 977
64 2048 671 4096 503
128 4096 517 8192 349

the economic viewpoint (raw cost and energy expense), and additionally a comparison based
on the core count is not meaningful since accelerators have a larger number of smaller cores
than a standard general purpose cpu. The results of this comparison show that in all the
cases, accelerators are more efficient than standard cpus in this kind of computations, with an
increase in computational efficiency ranging between 12% and 32%, the higher figures being
related to higher core counts (and thus to lower “human” time).

The scalability results shown in this section confirm that modern clusters are sufficiently
complex that profiling and optimisation are difficult tasks, and that the results of these ac-
tivities have a strong variability even between similar machines, and in the same machine
between different compilers. Indeed, despite the apparent similarity of the Ulysses and Mar-
coni Broadwell clusters, it was found that a code performing very close to an optimum on
Ulysses had issues on Marconi Broadwell, and that the scalability bottlenecks on cpus had
little to do with scalability bottlenecks found on accelerators.
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Figure 4.11: Results of the strong scalability test with '4 billion unknowns
on the Marconi KNL partition. The dashed line denotes the ideal scaling
that would happen if the computational time were proportional to the inverse
of the core count. The computations are performed on Intel Xeon Phi 7250
accelerators and the compiler used is the Intel Compiler, version 18.0.3 with

the Intel MPI Library, version 2018, update 3.
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Figure 4.12: Results of the strong scalability test with '4 billion unknowns
on the Marconi KNL partition. In this plot, each line shows the fraction of the
total time absorbed by the subroutines described in the legend. The processors
are Intel Xeon E5-2697 v4 and the compiler used is the Intel Compiler, version

18.0.3 with the Intel MPI Library, version 2018, update 3.
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Chapter 5

Numerical results

We discovered the secondary wave breaking phenomenon and the lump formation in the KPI
Equation by means of a numerical computation. This Chapter describes the setup and the
results of a systematic, detailed numerical study of the KPI Equation with small dispersion.

In the first part of the chapter, we study the nature of the isolated high peaks seen
numerically, and we show that these are practically indistinguishable from the lump exact
solution. We then give a qualitative description of the lump-wave interaction that is the main
mechanism by which the lumps arrange in a triangular lattice.

Secondly, we pursue a more quantitative study on the scaling properties of the wave
breaking phenomenon. This is achieved first by observing numerically the scaling of some
relevant quantities, with the norm of the initial data, for a fixed (small) value of ε. Then, we
repeat the same study for a fixed initial datum, and for varying (small) values of ε.

We conclude the chapter by presenting an analogy with the semiclassical limit of the
nonlinear Schrödinger Equation, that suggests a path to prove the scalings observed in the
previous sections, and to determine other relevant quantities, such as the position of the lumps
in a triangular lattice.

5.1 Lump formation mechanism

The peaks appearing in the numerical computations resemble closely the shape of lumps, so it
is interesting to check how the numerical structures are close to the lump solution. To answer
this question, we fit the expression for the lump solution to the numerical data. Let us recall
here the analytic form for a lump symmetric with respect to the x axis:

u(x, y, t) = 24
−(x− 3b2t)2 + 3b2y2 + 1

b2(
(x− 3b2t)2 + 3b2y2 + 1

b2

)2 . (5.1)

In this case, b is the only parameter that specifies at once the height, width and speed of the
lump. As discussed in Section 1.3.7, the position of the maximum height for the lump is:

xmax = 3b2t. (5.2)

It is also quite simple to set up an algorithm to detect the position of xmax from the numerical
data. As a result, we determine numerically the position of maximum height xmax(t) of the
numerical solution at each time step following the appearance of the first lump, and estimate
the parameter b by solving Equation (5.2) for b. The speed of the lump too is estimated
numerically by a finite incremental ratio:

c(t) =
xmax(t+ h)− xmax(t)

h
(5.3)

and is compared with the exact value for the lump’s speed, namely 3b2, b being estimated
from the numerical data as explained above. The results of this comparison are shown in
Figure 5.1, where the agreement between the numerical estimate for the lump’s speed and the
theoretical relation is excellent.

Another, more qualitative, test consists in estimating b by solving Equation (5.2) as de-
scribed above, and fitting the exact expression (5.1) for the lump with the numerical data in a



76 Chapter 5. Numerical results

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

t

17

18

19

20

21

x
m

ax (t0, x0)

numerical result

exact formula

Figure 5.1: Horizontal coordinate (xmax) of the maximum peak for a numeri-
cal solution of the KPI Equation with ε = 0.10 and initial datum corresponding
to Equation (5.6) with C0 = 6 (case n. 6 of Table 5.2). The numerical results
are shown with the black, continuous line, while the position obtained from
Equation (5.2), after estimating b by fitting the numerical data is shown with
the red, dashed line. The highlighted point, labelled with (t0, x0) corresponds
to the absolute maximum of |u|∞, taken for all the times for which the numer-

ical solution was computed.

neighbourhood of xmax. This fit is shown in Figure 5.2 for some representative snapshots, with
the plots taken along the line y = 0. The same comparison is shown as a three-dimensional
plot in Figure 5.3, where the best fit to the numerical data is subtracted to the computational
results. From this plot, the excellent fit of Equation (5.1) is clear, since in the right plot the
peak is removed almost completely.

The fits with the lump solution described in this section are based on a numerical solution
with initial datum:

u0(x, y) = −6∂x sech2
√
x2 + y2, (5.4)

which is a symmetric function with respect to x, namely u0(−x, y) = u0(x, y). It may be that
the existence of a lump lattice arrangement depends on this symmetric initial datum. To rule
out this possibility, we repeat the numerical computations with the initial datum:

u0(x, y) = −6∂x exp
(
−x2 − xy − y2

)
, (5.5)

which does not possess any symmetry. The results for the unsymmetric datum are shown in
Figure 5.4. In this case, the dispersive waves propagate in a direction which is not aligned with
x, however wave focusing the the formation of a triangular lump lattice still take place. The
solitons too are traveling at an angular direction, as testified by the fact that the triangular
lattice is in this case no longer symmetric.

We conclude this section by describing more accurately the process by which lumps form
and arrange in a triangular array. Our description is inspired by a numerical computation,
whose results are depicted in Figures 5.5 and 5.6, and these figures will be often referred to
in the following as a visual aid for understanding this phenomenon. The twelve insets that
compose Figure 5.6 are numbered here in the western natural reading ordering. The first
plot shows the last stages of the focusing process in the first wavefront, that leads to the
detachment of a lump, shown in the second plot. As a consequence of the lump formation, a
void region is left in the first wavefront, that corresponds to the darker area in the center of
the leftmost wave in the second and third plot. In the second and third plot, it is interesting to
note that a similar focusing process is taking place along the symmetry axis of the the second
wavefront, in a fashion similar to the focusing of the first wavefront for earlier times. The
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Figure 5.2: Comparison between the numerical solution and the exact expres-
sion for the lump soliton, Equation (5.1). The parameter for the lump solution
is fitted to the peak of the numerical solution by solving Equation (5.2) for b.

Figure 5.3: Surface plot of the numerical solution to the KPI Equation for
ε = 0.10 (left), and the same surface after subtracting the expression (5.1) for

the lump, fitted to the numerical data (right).

Figure 5.4: Formation of a lattice of lumps from a numerical computation
with ε = 0.02 and initial datum as of Equation (5.5). The three figures corre-

spond to t = 0.61 (left), t = 0.71 (center), and t = 0.86 (right).
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Table 5.1: Relevant parameters for the numerical computations for a fixed
dispersion (ε = 0.1), and varying initial data (C0). In the table, “n” denotes a
numeric identifier for each run, C0 is the constant in Equation (5.6) defining the
initial datum, h is the fixed time step chosen, and “grid” denotes the number

of grid points (or, equivalently, Fourier modes) in each direction.

n ε C0 h grid

1 0.10 4 2 · 10−4 213 × 213

2 0.10 5 1 · 10−4 213 × 213

3 0.10 6 1 · 10−4 213 × 213

4 0.10 7 1 · 10−4 214 × 214

5 0.10 8 1 · 10−4 214 × 214

plots from the third to the sixth show that the second lump, moving across the void region
ahead, interacts with the first wavefront in a way that leads to the formation of two lumps,
that emerge from the first wavefront. In the same plots, it is possible to note a third wave
focusing leading to the formation of a new, central lump from the third wavefront. From
the fifth to the seventh plot, a similar interaction between the third lump and the second
wavefront takes place, leading to the formation of a couple of symmetric solitons in the region
between the first and the second wavefront. These two solitons (plots from seventh to twelfth)
at later times interact with the two void regions left in the first wavefront by the previous
couple of lumps, and the result of this interaction is the formation of three lumps emerging
from a third wave breaking undergone by the first wavefront.

The process succintly described here continues at later times, and as a result of the lump-
wave interaction, it is possible to identify three regions in the positive part of the solution,
namely:

• a triangular lattice of two-dimensional peaks moving in the x-positive direction in a
solitonic fashion;

• a specular region of continuous lump-wave interaction, whose extension and shape
matches that of the solitonic region, and keeps growing in time;

• a region of unperturbed dispersive waves, propagating in both space directions, and
whose amplitude decreases as the waves spread.

The behaviour described in this section resembles quite closely that of the KdV Equation,
where it is well known [9] that a generic initial datum will evolve in solitons and radiation in
the long-time asymptotic.

5.2 Lump scaling for fixed ε

We now proceed by studying how the height (and thus the speed) of the lumps changes with
the energy of the initial datum, for a fixed value of ε. This test is performed by selecting an
initial datum with expression:

u0(x, y) = −C0∂x sech2
√
x2 + y2, (5.6)

with several values of C0 as shown in Table 5.1, and ε = 0.10. The initial datum consists
of a positive and a negative bump (see Figure 1.1 (left)), disposed so that these will move
away from each other during the time evolution. Furthermore, since the initial datum is a
derivative, it fulfills the first of the infinitely many constraints discussed in Section 1.3.4.

Clearly, the height of the initial datum depends on C0, and as C0 is increased, in can be
expected that the shock in the related dispersionless KP Equation becomes stronger, leading
to the formation of higher amplitude waves and to higher peaks in the KP Equation after
wave focusing instability. The results of this test are shown in Figure 5.7, where the lump
appearance corresponds to the sharp rise in the curves on the left plot. The linear fit on
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Figure 5.5: Slice along the line y = 0 of the numerical solution for ε = 0.02,
taken at a few representative times (note the different vertical scale between
the plots). The shock waves are moving from left to right in the pictures. The
steepening of the initial bump can be seen at t = 0.20, and already at t = 0.24
there is a dispersive regularisation for the shock, represented by the onset of
a few small amplitude oscillations. At t = 0.36 and t = 0.40, the dispersive
waves are propagating and the energy content of the waves is increasing, as
testified by the growing wave amplitude. Some focusing effects can be seen at
t = 0.40, as the leading wavefront departs from the line connecting the crests
of the other dispersive waves. At t = 0.44 a lump has completely formed, as
shown by the very high and localised peak, followed by another lump that is
forming right ahead of the wave train. The second lump has completely formed
at t = 0.48, and the effect of lump-wave interaction can be inferred from the
fact that the wave packet that has a much less regular structure than it had

for previous times.
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Figure 5.6: Detail of the lump formation mechanism for a numerical com-
putation with ε = 0.02 and C0 = 6 (case n. 14 of Table 5.2). The upper left
image corresponds to t = 0.42, and the others follow from left to right, from
top to bottom with a time separation of ∆t = 0.01. For the meaning of the

colors, see the colorbar on the upper left plot.
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Figure 5.7 (right) confirms that the maximum height of the lump is linearly correlated with
the magnitude of the initial datum, and that the time required by the lump to achieve its
maximum value is inversely proportional to C0. A notable numerical result is that after the
lump develops, its height is not constant in time, but is decreasing initially at a fast rate, later
on at a much slower pace. This is in contrast with the exact solution (5.1), that describes
a lump of constant height, and is the main observation that led us to the development of
Whitham’s modulation equations for the lump in Section 2.4.
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Figure 5.7: On the left, time evolution of the L∞ norm computed numerically
for ε = 0.02 and increasing magnitude of the initial datum, as for Table 5.1.
On the right, the maximum value of the L∞ norm for the times shown in the
left plot is regressed against C0. The linear interpolant has the expression:
|u|∞ = α + βC0 with coefficients determined by least squares interpolation:

α = −29.894, β = 10.838.

5.3 Lump scaling for fixed |u0|
The next campaign of numerical computations aims at studying the complementary approach
with respect to Section 5.2. In this case, the magnitude of the initial data is kept constant
(with the same initial data of Equation (5.6), but a fixed value C0 = 6), and several numerical
computations are executed for a few relevant values of ε, see Table 5.2 for the details. Following
the outline of the previous section, we report in Figure 5.8 the time behaviour of the L∞ norm
as computed numerically, for nine values of ε between 0.02 and 0.10. Comparing Figure 5.8
with Figure 5.7, it can be inferred that in this respect the dispersion coefficient has the
opposite effect than the magnitude of the initial data. More precisely, the lump maximum
height is inversely proportional to ε, while in the previous section it was shown that it is
directly proportional to C0. Conversely, the time required by the modulated lump to achieve
its maximum height grows with ε for a fixed C0, while it decreases with C0 for a fixed ε. To
get a scaling law from the numerical results, we consider the power-law scaling:

|u|∞ = α+ βεγ , (5.7)

which gives an exponent γ = 0.6437.
A last scaling consideration that we make here regards the position and time at which

the lump reaches its maximum height. In principle, it is possible to study the scaling of
these two quantities separately, but to provide a stricter scaling rule we consider the following
simultaneous fit:

xmax −
|u|max

tmax
= α+ βεγ , (5.8)

with

|u|max = max
t∈[0,T ]

‖u(x, y, t)‖L∞(T2) tmax = arg maxt∈[0,T ]‖u(x, y, t)‖L∞(T2). (5.9)
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Table 5.2: Relevant parameters of the numerical computations for a fixed
initial datum (C0 = 6), and varying dispersion coefficient (ε). In the table, “n”
denotes a numeric identifier for each run, C0 is the constant in Equation (5.6)
defining the symmetric initial datum, h is the fixed time step chosen, and
“grid” denotes the number of grid points (or, equivalently, Fourier modes) in

each direction.

n ε C0 h grid

6 0.10 6 2 · 10−4 214 × 214

7 0.09 6 2 · 10−4 214 × 214

8 0.08 6 2 · 10−4 214 × 214

9 0.07 6 2 · 10−4 214 × 214

10 0.06 6 1 · 10−4 214 × 214

11 0.05 6 1 · 10−4 215 × 215

12 0.04 6 8 · 10−5 215 × 215

13 0.03 6 4 · 10−5 216 × 215

14 0.02 6 4 · 10−5 216 × 216

The regression for the quantity of Equation (5.8), as well as its numerical data are shown in
Figure 5.9. The scaling given by the fit is γ = 0.7820, and this value will be discussed in
Section 5.4.

0

10

20

30

40

50

60

70

0 0.20.40.60.8 1 1.21.41.61.8 2
30

35

40

45

50

55

60

65

0 0.02 0.04 0.06 0.08 0.1

|u
| ∞

t

ε = 0.02
ε = 0.03
ε = 0.04
ε = 0.05
ε = 0.06
ε = 0.07
ε = 0.08
ε = 0.09
ε = 0.10

|u
| ∞

ε

data
interpolant

Figure 5.8: Numerical values for the L∞ norm of the solution for a fixed
value of C0 and several values of ε (left), and maximum absolute value of
the numerical solution computed over the time intervals considered for the
numerical computations of Table 5.2 (right). The power-law fit |u|∞ = α+βεγ

gives α = 77.9350, β = −181.4782, γ = 0.6437.

5.4 Connection with focusing NLS

In this last section, we put forward an observation which relates the structures emerging
from the wave breaking in the KPI Equation with a rigorous asymptotic result known for
the focusing NLS Equation. The consequences of this analogy, although not proven here,
may be a valid step towards the precise description of the structures and the scaling seen
numerically for the KPI Equation in the small dispersion or large energy regimes. Consider
the semiclassical limit of the focusing nonlinear Schrödinger (NLS) Equation [77] in one space
dimension (x ∈ R):

iεψt +
ε2

2
ψxx + |ψ|2ψ = 0, (5.10)

with initial datum:
ψ(x, 0) = A(x) exp

(
i

ε
S(x)

)
, (5.11)



5.4. Connection with focusing NLS 83

14.8

14.9

15

15.1

15.2

15.3

15.4

0.04 0.06 0.08 0.1

x
m
a
x
−
|u
| m

ax
t m

ax
/
8

ε

data
interpolant

Figure 5.9: Numerical values for the quantity xmax − |u|maxtmax (see Equa-
tion (5.9) for the meaning of the symbols) and power-law fit α + βεγ , which

gives the coefficients α = 14.354, β = 6.1037, γ = 0.7820.

where A(x) and S(x) are real analytic functions of x, and A(x) represents a localised ampli-
tude. It is known that generically the initial datum (5.11) under the NLS flow will form a
point of gradient singularity (x0, t0), and that in a neighbourhood of the singularity the solu-
tion will develop a region of fast oscillations both in amplitude and in phase. This behaviour
is shown qualitatively in Figure 5.10, where squared modulus (left) and phase (right) of a
numerical solution for the initial datum:

ψ(x, 0) = sechx, (5.12)

with ε = 0.02 are plot.

Figure 5.10: Breather formation (space-time plot) in the semiclassical limit
of the NLS Equation, with the initial datum of Equation (5.12) and ε = 0.02.
The square modulus (ρ = |ψ|2) is shown on the left picture, while the phase
(argψ) is shown on the right picture. The data for the plots is obtained from

a numerical computation using a Fourier pseudospectral method.

Bertola and Tovbis [18] proved several results that make more precise the qualitative
behaviour of Figure 5.10, among which we recall the following.

• The maximum peak is approximated by the Peregrine breather [108], defined by:

QP (X,T ; a, b) = bei(aX+(a2/2−b2)T)
(

1− 4
1 + 2ib2T

1 + 4b2(X + aT )2 + 4b4T 2

)
. (5.13)

and the asymptotic is of order 1
5 in ε, namely:

ψ(x, t) = QP

(
x− xp
ε

,
t− tp
ε

; a, b

)
+O(ε

1
5 ), (5.14)
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pointwise, for appropriate values of the constants a and b that will be discussed later.
This behaviour is universal, in the sense that it is independent of the exact expression
of the initial datum, provided that it is in the class (5.11)

• The lattice arrangement of the peaks in the x-t plane is the same as the poles of the
tritronquée solution of the Painlevé I Equation in the complex plane, which is defined
as the unique solution y(z) to:

y′′(z) = 6y(z)2 + z (5.15)

subject to the asymptotic condition:

y(z) =

√
−6

z
(5.16)

as z → −∞.

The visual similarity of the NLS breathers in Figure 5.10 in the x-t plane and of the KPI
lumps in Figure 5.6 in the x-y plane is striking, and seems to suggest some connection between
the small dispersion asymptotics of these two equations.

It is convenient to introduce the Madelung variables:

ρ = |ψ|2 w =
ε

2i

(
ψx
ψ
− ψx

ψ

)
, (5.17)

where ρ can be interpreted as a probability density, to rewrite the NLS Equation (5.10) in
the hydrodynamic form:

ρt + (ρw)x = 0 (5.18)

wt − ρx + wwx +
ε2

4

(
1

2

ρ2x
ρ2
− ρxx

ρ

)
x

= 0. (5.19)

Equation (5.19) can be expressed as a nonlinear system of conservation laws:(
ρ
w

)
t

+

[
w ρ
−1 w

](
ρ
w

)
x

=

(
0

ε2

4

(
ρxx
ρ − 1

2
ρ2x
ρ2

)
x

)
. (5.20)

It can be checked that the eigenvalues of the system (5.20) for ε = 0 are:

λ1,2 = w ± i
√
ρ, (5.21)

and that in general these values are complex numbers with nonzero imaginary part, so that
the system of conservation laws (5.20) with ε = 0 is elliptic, and generically an elliptic umbilic
singularity takes place at a point (x0, t0). In [18], the authors prove that in the semiclassical
limit, such a caustic singularity does indeed form at the point of gradient catastrophe, and
that the semiclassical equation is a good approximation (to order O(ε) of the semiclassical case
as long as the gradients do not grow too much (namely, for t < t0). The effect of a nonzero
dispersion is to keep the solution bounded; as a result, there is an obstruction to the formation
of singularities, leading instead to the formation of high but bounded peaks, approximately
described by Peregrine breathers. In the dispersive case, the peak of the first breather forms
slightly ahead of the singularity in the semiclassical limit, and the distance between the lump
and the singularity scales as ε4/5. The modulus of the first peak is 9ρ(x0, t0), very close to the
numerical value of 10 found in our numerical computations for the KPI Equation. Bertola
and Tovbis also prove that close to the position of the tritronqueé solution of the Painlevé I
Equation, the cubic NLS Equation has the following asymptotic description:

ψ(x, t) = QP

(
x− x0
ε

,
t− t0
ε

;−w(x0, t0),
√
ρ(x0, t0)

)
+O(ε1/5), (5.22)
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where QP is the Peregrine breather, defined in Equation (5.13). Computing the squared
modulus of the Peregrine breather gives:

|QP (X,T ; a, b)|2 = b2 − 8
−4(x+ aT )2 + 4b2T 2 + 1/b2

(4(X + aT )2 + 4b2T 2 + 1/b2)2
, (5.23)

and by means of the following change of variables:

X = x− 3b2t T = 2
√

3y (5.24)

after a rescaling, the squared modulus of the Peregrine breather (5.23) gives:

3b2 − 12

∣∣∣∣QP (x− 3b2t, 2
√

3y; 0,
b

2

)∣∣∣∣2 = 24
−(x− 3b2t)2 + 3b2y2 + 1

b2(
(x− 3b2t)2 + 3b2y2 + 1

b2

)2 , (5.25)

which is the symmetric1 lump solution of the KPI Equation.
This fact, jointly with the numerically verified scaling law ' ε4/5, provides some justifica-

tion for the similar phenomenon of peak formation in the NLS Equation and lump formation
in the KPI Equation. This connection between NLS and KPI can be further developed to
predict the position of the first KPI lump. In [18] it is shown that the breathers of the NLS
Equation emerge at (xb, tb) given by the following relation:

zp =
c

ε4/5

[
xb − x0 + (−w(x0, t0) + i

√
ρ(x0, t0)) (tb − t0)

]
, (5.26)

where zp is a pole for the tritronqueé solution of the Painlevé I Equation, and a, b, c are
constants. In particular, the first peak corresponds to the first pole on the negative real
axis of the tritronqueé solution. By the change of variables (5.24), we obtain the following
expression for the position (xl, yl, tl) for the emergence of the first lump:

zp =
c

ε4/5
[
xl − 3b2tl − (x0 − 3b2t0)

]
, (5.27)

where (x0, y0, t0) are the coordinates where the Whitham system develops the first singularity.
Equation (5.27) allows to conclude that the quantity:

xl = 3b2tl (5.28)

scales as ε4/5. This scaling is indeed confirmed by the numerical computations in Section 5.3,
see in particular Figure 5.9.

1The full lump solution, Equation (1.102) can be obtained with a slightly different change of variables:

3b2 − 12

∣∣∣∣QP

(
x− (a2 + 3b2)t, 2

√
3(t+ 2at);

a

2
√
3
,
b

2

)∣∣∣∣2
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