Introduction to Linear Differential Equations
in the Complex Domain and Isomonodromic Deformations

about 30 hours
Davide Guzzetti, Fall 2020

The aim of the course is to provide basic notions about linear systems of
differential equations in the complex domain, monodromy data, isomon-
odromy deformations. These notions play an important role in modern
mathematical physics, for example in integrable systems.

– Existence and uniqueness theorems in the complex domain.
– Linear systems
– Singularities and monodromy
– Classification of isolated singularities of linear systems (first and second
 kind).
– Linear systems with singularities of first kind (Fuchsian systems). Re-
duction to Birkhoff normal form.
– Linear equations of order n. Riemann and Gauss equations.
– Review of Poincaré asymptotics.
– Linear Systems with singularities of the second kind.
Stokes phenomenon (some examples, such as the Bessel equation).
– Global description. Monodromy data.
– Linear systems depending on parameters.

Prerequisites: Complex analysis, theory of analytic functions in one
complex variable (see Reference 4. below).

Basic References
1. W. Wasow: Asymptotic Expansions for Ordinary Differential Equa-
tions.

3. E.L. Ince: *Ordinary Differential Equations*

4. V.I. Smirnov: *A course of higher mathematics. Vol. 3. Part 2: complex variables, special functions*

