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The aim of the course is to provide basic notions about linear systems of
differential equations in the complex domain, monodromy data, isomon-
odromy deformations. These notions play an important role in modern
mathematical physics, for example in integrable systems.

– Existence and uniqueness theorems in the complex domain.

– Linear systems

– Singularities and monodromy

– Classification of isolated singularities of linear systems (first and second
kind).

– Linear systems with singularities of first kind (Fuchsian systems). Re-
duction to Birkhoff normal form.

– Linear equations of order n. Riemann and Gauss equations.

– Review of Poincaré asymptotics.

– Linear Systems with singularities of the second kind.

– Unramified singularities. Reduction to Birkhoff normal form. Invariants.
Stokes phenomenon (some examples, such as the Bessel equation).

– Global description. Monodromy data.

– Linear systems depending on parameters.

– Monodromy preserving deformations. Examples. Painlevé equations.

Prerequisites: Complex analysis, theory of analytic functions in one
complex variable (see Reference 4. below).
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