A. Agrachev, October 2015 – January 2016.

The course in nonlinear analysis for the 2nd year laurea magistrale and 1st year Ph.D. students. 48 hours, written exam.

- 1. Regular and critical point of smooth maps. The notion of transversality.
- 2. Sard's lemma. Generic properties.
- 3. Whitney embedding theorem.
- 4. Topological degree of a continuous map.
- 5. The Leray–Schauder degree.
- 6. Intersection number and linking number.
- 7. Index of a vector field on a smooth manifold.
- 8. Linearization of a vector field at the equilibrium. Phase portraits of linear systems.
- 9. Asymptotic stability of the equilibrium and Lyapunov functions.
- 10. Structural stability of the hyperbolic equilibria; the Grobman–Hartman theorem.
- 11. Asymptotic behavior of the solutions of two-dimensional systems; the Poincare–Bendixson theorem.
- 12. Structurally stable two-dimensional phase portraits.
- 13. Andronov–Hopf biburcation.