Singularly perturbed gradient flows in infinite-dimensional spaces

We study the limit behavior, as ε goes to zero, of a family of solutions to the gradient flow

$$\varepsilon \dot{u}_{\varepsilon}(t) + \mathcal{D}_{x}\mathcal{E}(t, u_{\varepsilon}(t)) = 0,$$

where \mathcal{E} is an energy functional defined on $[0, T] \times H$ and H is a Hilbert space. To tackle the problem, we adopt a variational point of view and the assumptions we make on \mathcal{E} are quite standard in this context. We also require the condition

$$\{x \in \mathsf{H} : \mathrm{D}_x \mathcal{E}(t, x) = 0\}$$
 discrete for every $t \in [0, T]$,

whose "genericity" can be rigorously proved. To recover the compactness of a family u_{ϵ_n} of solutions, we analyse in detail the integral quantities

$$\int_{t_1^n}^{t_2^n} \| \mathcal{D}_x \mathcal{E}(r, u_{\varepsilon_n}(r)) \| \| \dot{u}_{\varepsilon_n}(r) \| dr,$$

for every $t \in [0,T]$ and all sequences $t_1^n \leq t_2^n$ converging to t. We show that these integrals are bounded below by a strictly positive *cost function* $c(t;x_1,x_2)$, whenever $u_{\varepsilon_n}(t_1^n)$ and $u_{\varepsilon_n}(t_2^n)$ converge to two different critical points x_1 and x_2 of $\mathcal{E}(t,\cdot)$. Some key properties of the cost function allow us to prove that u_{ε_n} convergence pointwise in [0,T] to a limit solution u, which satisfies $D_x \mathcal{E}(t,u(t)) = 0$ for a.e. $t \in (0,T)$. Moreover, we prove that u is continuous on $[0,T] \setminus J$, that the jump set J is a countable set, and that the left and the right limits $u_-(t)$, $u_+(t)$ always exist and satisfy $\mathcal{E}(t,u_-(t)) - \mathcal{E}(t,u_+(t)) = c(t;u_-(t),u_+(t))$.

This is a joint work with Riccarda Rossi and Giuseppe Savaré.