On the condition number for polynomial eigenvalues of random matrices

Khazhgali Kozhasov (joint with Carlos Beltran)

A (real) polynomial eigenvalue of a ($d+1$)-uple of $n \times n$ (real) matrices $A=\left(A_{0}, \ldots, A_{d}\right)$ is a projective root $x=[\alpha: \beta] \in \mathbb{R} \mathrm{P}^{1}$ of $\operatorname{det}\left(\beta^{d} A_{0}+\alpha \beta^{d-1} A_{1}+\cdots+\alpha^{d} A_{d}\right)=0$. The "worst" infinitesimal change $\mu(A, x)$ in $x \in \mathbb{R} \mathrm{P}^{1}$ under an infinitesimal perturbation of A is called the local condition number of A at x. Then the condition number $\mu(A)$ of A is the $\operatorname{sum} \mu(A)=\sum \mu(A, x)$ over all polynomial eigenvalues of A. We provide explicit formulas for the expected condition number $\mathbb{E} \mu(A)$ when the matrices $A_{0}, A_{1}, \ldots, A_{d}$ are drawn from various random matrix ensembles. For example, if $A_{0}, A_{1}, \ldots, A_{d}$ are independent matrices whose entries are independent standard Gaussian variables we have

$$
\mathbb{E} \mu(A)=\pi \frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)} \frac{\Gamma\left(\frac{(d+1) n^{2}}{2}\right)}{\Gamma\left(\frac{(d+1) n^{2}-1}{2}\right)}=\frac{\pi}{2} \sqrt{d+1} n^{3 / 2}\left(1+\mathcal{O}\left(\frac{1}{n}\right)\right), n \rightarrow \infty .
$$

This formula establishes the asymptotic square root law for the polynomial eigenvalue problem, i.e., the answer (asymptotically, when $n \rightarrow \infty$) is the square root of the answer to the analogous problem over the complex numbers investigated in a recent paper by D. Armentano and C. Beltran.

