MENU

You are here

mathLab

Advanced Programming

The course aims to provide advanced knowledge of both theoretical and practical programming in C++14 and Python3, particularly the principles of object-oriented programming and best practices of software development.

Syllabus:

Topics in Computational Fluid Dynamics

  • Introduction to CFD, examples.
  • Constitutive laws
  • Incompressible flows.
  • Numerical methods for potential and thermal flows
  • Boundary layer theory

Computational Mechanics by Reduced Order Methods

In this course we present reduced basis (RB) approximation and associated a posteriori error estimation for rapid and reliable solution of parametrized partial differential equations (PDEs). The focus is on rapidly convergent Galerkin approximations on a subspace spanned by "snapshots'"; rigorous and sharp a posteriori error estimators for the outputs/quantities of interest; efficient selection of quasi-optimal samples in general parameter domains; and Offline-Online computational procedures for rapid calculation in the many-query and real-time contexts.

Topics in Continuum Mechanics

  • Reminders on Linear Algebra and Tensor Calculus
  • Kinematics of deformable bodies
  • Eulerian and Lagrangian descriptions of motion
  • Balance laws of continuum mechanics: conservation of mass, balance of linear and angular momentum, energy balance and dissipation inequality
  • Constitutive equations
  • Fluid dynamics: the Navier Stokes equations
  • Solid mechanics: nonlinear and linearized elasticity
  • Selected topics from the mechanics of biological systems

 Books:

Pages

Sign in