Long time dynamics of Schrödinger and wave equations on flat tori. J. Differential Equations [Internet]. 2019 ;267:1167–1200. Available from: https://doi.org/10.1016/j.jde.2019.02.004
. Almost global solutions of capillary-gravity water waves equations on the circle. Springer, Cham; Unione Matematica Italiana, [Bologna]; 2018 p. x+268. Available from: https://doi.org/10.1007/978-3-319-99486-4
. KAM for gravity water waves in finite depth. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. [Internet]. 2018 ;29:215–236. Available from: https://doi.org/10.4171/RLM/802
. Large KAM tori for perturbations of the defocusing NLS equation. Astérisque. 2018 :viii+148.
. Time quasi-periodic gravity water waves in finite depth. Invent. Math. [Internet]. 2018 ;214:739–911. Available from: https://doi.org/10.1007/s00222-018-0812-2
. Quasi-periodic water waves. J. Fixed Point Theory Appl. [Internet]. 2017 ;19:129–156. Available from: https://doi.org/10.1007/s11784-016-0375-z
. KAM for autonomous quasi-linear perturbations of KdV. Ann. Inst. H. Poincaré C Anal. Non Linéaire [Internet]. 2016 ;33:1589–1638. Available from: https://doi.org/10.1016/j.anihpc.2015.07.003
. KAM for autonomous quasi-linear perturbations of mKdV. Boll. Unione Mat. Ital. [Internet]. 2016 ;9:143–188. Available from: https://doi.org/10.1007/s40574-016-0065-1
. KAM for PDEs. Boll. Unione Mat. Ital. [Internet]. 2016 ;9:115–142. Available from: https://doi.org/10.1007/s40574-016-0067-z
. An abstract Nash-Moser theorem and quasi-periodic solutions for NLW and NLS on compact Lie groups and homogeneous manifolds. Comm. Math. Phys. [Internet]. 2015 ;334:1413–1454. Available from: https://doi.org/10.1007/s00220-014-2128-4
. A Nash-Moser approach to KAM theory. In: Hamiltonian partial differential equations and applications. Vol. 75. Hamiltonian partial differential equations and applications. Fields Inst. Res. Math. Sci., Toronto, ON; 2015. pp. 255–284. Available from: https://doi.org/10.1007/978-1-4939-2950-4_9
. KAM for quasi-linear and fully nonlinear forced perturbations of Airy equation. Mathematische Annalen. 2014 :1-66.
. KAM for quasi-linear KdV. C. R. Math. Acad. Sci. Paris [Internet]. 2014 ;352(7-8):603-607. Available from: http://urania.sissa.it/xmlui/handle/1963/35067
. KAM for Reversible Derivative Wave Equations. Arch. Ration. Mech. Anal. [Internet]. 2014 ;212(3):905-955. Available from: http://urania.sissa.it/xmlui/handle/1963/34646
. Existence and stability of quasi-periodic solutions for derivative wave equations. Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, Rendiconti Lincei Matematica e Applicazioni. 2013 ;24:199-214.
. KAM theory for the Hamiltonian derivative wave equation. Annales Scientifiques de l'Ecole Normale Superieure. 2013 ;46:301-373.
. A note on KAM theory for quasi-linear and fully nonlinear forced KdV. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 24 (2013), no. 3: 437–450. 2013 .
. Quasi-periodic solutions of PDEs. In: Séminaire Laurent Schwartz–-Équations aux dérivées partielles et applications. Année 2011–2012. Séminaire Laurent Schwartz–-Équations aux dérivées partielles et applications. Année 2011–2012. École Polytech., Palaiseau; 2013. p. Exp. No. XXX, 11.
. Quasi-periodic solutions with Sobolev regularity of NLS on Td with a multiplicative potential. Journal of the European Mathematical Society. 2013 ;15:229-286.
. Sobolev quasi-periodic solutions of multidimensional wave equations with a multiplicative potential. Nonlinearity. 2012 ;25:2579-2613.
. Branching of Cantor Manifolds of Elliptic Tori and Applications to PDEs. Communications in Mathematical Physics. 2011 ;305:741-796.
. Degenerate KAM theory for partial differential equations. Journal of Differential Equations. 2011 ;250:3379-3397.
. Nonlinear wave and Schrödinger equations on compact Lie groups and homogeneous spaces. Duke Mathematical Journal. 2011 ;159(3).
. Quasi-periodic solutions of nonlinear Schrödinger equations on $\Bbb T^d$. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. [Internet]. 2011 ;22:223–236. Available from: https://doi.org/10.4171/RLM/597
. An abstract Nash-Moser theorem with parameters and applications to PDEs. Annales de l'Institut Henri Poincare. Annales: Analyse Non Lineaire/Nonlinear Analysis. 2010 ;27:377-399.
.