Point-Like Perturbed Fractional Laplacians Through Shrinking Potentials of Finite Range. Complex Analysis and Operator Theory [Internet]. 2019 . Available from: https://doi.org/10.1007/s11785-019-00927-w
. .
Fractional powers and singular perturbations of quantum differential Hamiltonians. Journal of Mathematical Physics [Internet]. 2018 ;59:072106. Available from: https://doi.org/10.1063/1.5033856
. On fractional powers of singular perturbations of the Laplacian. Journal of Functional Analysis [Internet]. 2018 ;275:1551 - 1602. Available from: http://www.sciencedirect.com/science/article/pii/S0022123618301046
. Global, finite energy, weak solutions for the NLS with rough, time-dependent magnetic potentials. Zeitschrift für angewandte Mathematik und Physik [Internet]. 2018 ;69:46. Available from: https://doi.org/10.1007/s00033-018-0938-5
. Lp-Boundedness of Wave Operators for the Three-Dimensional Multi-Centre Point Interaction. Annales Henri Poincaré [Internet]. 2018 ;19:283–322. Available from: https://doi.org/10.1007/s00023-017-0628-4
. Singular Hartree equation in fractional perturbed Sobolev spaces. Journal of Nonlinear Mathematical Physics [Internet]. 2018 ;25:558-588. Available from: https://doi.org/10.1080/14029251.2018.1503423
. Dispersive Estimates for Schrödinger Operators with Point Interactions in ℝ3. In: Advances in Quantum Mechanics: Contemporary Trends and Open Problems. Advances in Quantum Mechanics: Contemporary Trends and Open Problems. Cham: Springer International Publishing; 2017. pp. 187–199. Available from: https://doi.org/10.1007/978-3-319-58904-6_11
.