MENU

You are here

Semilinear equations in singularly perturbed domains with applications to phase transitions and geometrically constrained walls

Course Type: 
PhD Course
Academic Year: 
2012-2013
Period: 
March-April
Duration: 
20 h
Description: 
  • Phase transitions models and the Cahn-Hilliard functional.
  • The Modica-Mortola Gamma-convergence result.
  • Structure of local minimizers of the Cahn-Hilliard functional in convex domains.
  • Construction of nonconstant local minimizers in nonconvex domains.
  • Extreme geometry and geometrically constrained magnetic walls:
    • construction of nontrivial local minimizers in singularly perturbed domains,
    • asymptotic analysis of the behavior of local minimizers in the singular limit. 
Location: 
A-133
Next Lectures: 

Sign in