Title | Quasi-periodic solutions with Sobolev regularity of NLS on Td with a multiplicative potential |
Publication Type | Journal Article |
Year of Publication | 2013 |
Authors | Berti, M, Bolle, P |
Journal | Journal of the European Mathematical Society |
Volume | 15 |
Pagination | 229-286 |
ISSN | 14359855 |
Abstract | We prove the existence of quasi-periodic solutions for Schrödinger equations with a multiplicative potential on Td , d ≥ 1, finitely differentiable nonlinearities, and tangential frequencies constrained along a pre-assigned direction. The solutions have only Sobolev regularity both in time and space. If the nonlinearity and the potential are C∞ then the solutions are C∞. The proofs are based on an improved Nash-Moser iterative scheme, which assumes the weakest tame estimates for the inverse linearized operators ("Green functions") along scales of Sobolev spaces. The key off-diagonal decay estimates of the Green functions are proved via a new multiscale inductive analysis. The main novelty concerns the measure and "complexity" estimates. © European Mathematical Society 2013. |
DOI | 10.4171/JEMS/361 |