Chern-Simons theory on L(p,q) lens spaces and Gopakumar-Vafa duality. J. Geom. Phys. 60 (2010) 417-429 [Internet]. 2010 . Available from: http://hdl.handle.net/1963/2938
. On a class of vector fields with discontinuity of divide-by-zero type and its applications. Journal of dynamical and control systems . 2012 ;18(1 ):135-158.
. A Comparison Between Active Strain and Active Stress in Transversely Isotropic Hyperelastic Materials. J. Elast. 2018 .
. Concentration of solutions for some singularly perturbed mixed problems: Asymptotics of minimal energy solutions. Ann. Inst. H. Poincare Anal. Non Lineaire 27 (2010) 37-56 [Internet]. 2010 . Available from: http://hdl.handle.net/1963/3409
. Concentration of solutions for some singularly perturbed mixed problems. Part I: existence results. Arch. Ration. Mech. Anal. 196 (2010) 907-950 [Internet]. 2010 . Available from: http://hdl.handle.net/1963/3406
. Conformal invariants from nodal sets. I. negative eigenvalues and curvature prescription. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/35128
. Correspondence between Minkowski and de Sitter quantum field theory. Phys. Lett. B. 1999 ;462:249–253.
. Crawlers in viscous environments: linear vs nonlinear rheology. International Journal of Non-Linear Mechanics 56, 142-147 (2013). 2013 .
. Crawling on directional surfaces. International Journal of Non-Linear Mechanics [Internet]. 2014 ;61:65 - 73. Available from: http://www.sciencedirect.com/science/article/pii/S0020746214000213
. On the Critical Behavior, the Connection Problem and the Elliptic Representation of a Painlevé VI Equation. Mathematical Physics, Analysis and Geometry 4: 293–377, 2001. 2001 .
. Cubic string boundary value problems and Cauchy biorthogonal polynomials. J. Phys. A [Internet]. 2009 ;42:454006, 13. Available from: http://0-dx.doi.org.mercury.concordia.ca/10.1088/1751-8113/42/45/454006
. Deal2lkit: a Toolkit Library for High Performance Programming in deal.II. [Internet]. 2015 . Available from: http://urania.sissa.it/xmlui/handle/1963/35006
. deal2lkit: A toolkit library for high performance programming in deal.II. SOFTWAREX. 2018 ;7:318–327.
. The deal.II Library, Version 9.0. JOURNAL OF NUMERICAL MATHEMATICS [Internet]. 2018 . Available from: https://doi.org/10.1515/jnma-2018-0054
The deal.II Library, Version 9.1. Journal of Numerical Mathematics. 2019 .
Decomposing quantum fields on branes. Nuclear Phys. B. 2000 ;581:575–603.
. A degeneration of two-phase solutions of the focusing nonlinear Schrödinger equation via Riemann-Hilbert problems. J. Math. Phys. [Internet]. 2015 ;56:061507, 17. Available from: http://dx.doi.org/10.1063/1.4922362
. Dieletric breakdown: optimal bounds. Proc. of the Royal Society of London Series A-Mathematical Physical and Engineering Sciences 457 (2001): p. 2317-2335, OCT. 8, 2001 [Internet]. 2001 . Available from: http://hdl.handle.net/1963/1569
. Differential structure associated to axiomatic Sobolev spaces. Expositiones Mathematicae [Internet]. 2019 . Available from: http://www.sciencedirect.com/science/article/pii/S0723086918300975
. Double resonance with Landesman–Lazer conditions for planar systems of ordinary differential equations. Journal of Differential Equations [Internet]. 2011 ;250:1052 - 1082. Available from: http://www.sciencedirect.com/science/article/pii/S0022039610002901
. Effective inverse spectral problem for rational Lax matrices and applications. Int. Math. Res. Not. IMRN. 2007 :Art. ID rnm103, 39.
. An effective model for nematic liquid crystal composites with ferromagnetic inclusions. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/34940
. The Elliptic Representation of the General Painlevé 6 Equation. Communications on Pure and Applied Mathematics, Volume 55, Issue 10, October 2002, Pages 1280-1363 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/6523
. Elliptic variational problems in $ R\\\\sp N$ with critical growth. J. Differential Equations 168 (2000), no. 1, 10--32 [Internet]. 2000 . Available from: http://hdl.handle.net/1963/1258
. An entropic interpolation proof of the HWI inequality. Stochastic Processes and their Applications [Internet]. 2019 . Available from: http://www.sciencedirect.com/science/article/pii/S0304414918303454
.