Virtual element methods for elliptic problems on polygonal meshes. In: Generalized barycentric coordinates in computer graphics and computational mechanics. Generalized barycentric coordinates in computer graphics and computational mechanics. CRC Press, Boca Raton, FL; 2018. pp. 263–279.
. Conforming and nonconforming virtual element methods for elliptic problems. IMA J. Numer. Anal. [Internet]. 2017 ;37:1317–1354. Available from: https://doi.org/10.1093/imanum/drw036
. The nonconforming virtual element method for the Stokes equations. SIAM J. Numer. Anal. [Internet]. 2016 ;54:3411–3435. Available from: https://doi.org/10.1137/15M1049531
. Convergence of the mimetic finite difference method for eigenvalue problems in mixed form. Comput. Methods Appl. Mech. Engrg. [Internet]. 2011 ;200:1150–1160. Available from: https://doi.org/10.1016/j.cma.2010.06.011
. Convergence analysis of the mimetic finite difference method for elliptic problems. SIAM J. Numer. Anal. [Internet]. 2009 ;47:2612–2637. Available from: https://doi.org/10.1137/080717560
. Flux reconstruction and solution post-processing in mimetic finite difference methods. Comput. Methods Appl. Mech. Engrg. [Internet]. 2008 ;197:933–945. Available from: https://doi.org/10.1016/j.cma.2007.09.019
.