A second order minimality condition for the Mumford-Shah functional. Calc. Var. Partial Differential Equations 33 (2008) 37-74 [Internet]. 2008 . Available from: http://hdl.handle.net/1963/1955
. . Self-propelled micro-swimmers in a Brinkman fluid. Journal of Biological Dynamics [Internet]. 2012 ;6:88-103. Available from: https://doi.org/10.1080/17513758.2011.611260
. Self-similar folding patterns and energy scaling in compressed elastic sheets. Comput. Methods Appl. Mech. Engrg. 194 (2005) 2534-2549 [Internet]. 2005 . Available from: http://hdl.handle.net/1963/3000
. Semiclassical analysis of constrained quantum systems. J. Phys. A 37 (2004) 5605-5624 [Internet]. 2004 . Available from: http://hdl.handle.net/1963/2997
. Semiclassical evolution of two rotating solitons for the Nonlinear Schrödinger Equation with electric potential. Adv. Differential Equations [Internet]. 2010 ;15:315–348. Available from: https://projecteuclid.org:443/euclid.ade/1355854752
. Semiclassical limit of focusing NLS for a family of square barrier initial data. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/35066
. Semiclassical orthogonal polynomials, matrix models and isomonodromic tau functions. Comm. Math. Phys. 2006 ;263:401–437.
. Semi-cooperative strategies for differential games. Internat. J. Game Theory 32 (2004) 561-593 [Internet]. 2004 . Available from: http://hdl.handle.net/1963/2893
. The semigroup approach to systems of conservation laws. Mat. Contemp. 10 (1996) 21-74 [Internet]. 1996 . Available from: http://hdl.handle.net/1963/1037
. The semigroup generated by a temple class system with large data. Differential Integral Equations 10 (1997), no. 3, 401-418 [Internet]. 1997 . Available from: http://hdl.handle.net/1963/1023
. The semigroup generated by a Temple class system with non-convex flux function. Differential Integral Equations 13 (2000) 1529-1550 [Internet]. 2000 . Available from: http://hdl.handle.net/1963/3221
. Semistability vs. nefness for (Higgs) vector bundles. Differential Geom. Appl. 24 (2006) 403-416 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/2237
. Semistable and numerically effective principal (Higgs) bundles. Advances in Mathematics 226 (2011) 3655-3676 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/3638
. On semistable principal bundles over a complex projective manifold. Int. Math. Res. Not. vol. 2008, article ID rnn035 [Internet]. 2008 . Available from: http://hdl.handle.net/1963/3418
. On semistable principal bundles over complex projective manifolds, II. Geom. Dedicata 146 (2010) 27-41 [Internet]. 2010 . Available from: http://hdl.handle.net/1963/3404
. Separation of variables for Bi-Hamiltonian systems. Math. Phys. Anal. Geom. 6 (2003) 139-179 [Internet]. 2003 . Available from: http://hdl.handle.net/1963/1598
. Sequences of Singularly Perturbed Functionals Generating Free-Discontinuity Problems. SIAM J. Math. Anal. 35 (2003) 759-805 [Internet]. 2003 . Available from: http://hdl.handle.net/1963/3071
. The Serre–Swan theorem for normed modules. Rendiconti del Circolo Matematico di Palermo Series 2 [Internet]. 2019 ;68:385–404. Available from: https://doi.org/10.1007/s12215-018-0366-6
. Shape control of active surfaces inspired by the movement of euglenids. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/35118
. Shape Optimization by Free-Form Deformation: Existence Results and Numerical Solution for Stokes Flows. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/34698
. Shape optimization for Dirichlet problems: relaxed formulations and optimally conditions. Appl.Math.Optim. 23 (1991), no.1, p. 17-49. [Internet]. 1991 . Available from: http://hdl.handle.net/1963/880
. Shape optimization for Dirichlet problems: relaxed solutions and optimality conditions. Bull. Amer. Math. Soc. (N.S.) , 23 (1990), no.2, 531-535. [Internet]. 1990 . Available from: http://hdl.handle.net/1963/809
. Shape transitions in a soft incompressible sphere with residual stresses. Math. Mech. Solids. 2018 ;23:1507–1524.
. A sharp decay estimate for positive nonlinear waves. SIAM J. Math. Anal. 36 (2004) 659-677 [Internet]. 2004 . Available from: http://hdl.handle.net/1963/2916
.