MENU

You are here

Mathematical Analysis, Modelling, and Applications

The activity in mathematical analysis is mainly focussed on ordinary and partial differential equations, on dynamical systems, on the calculus of variations, and on control theory. Connections of these topics with differential geometry are also developed.The activity in mathematical modelling is oriented to subjects for which the main technical tools come from mathematical analysis. The present themes are multiscale analysismechanics of materialsmicromagneticsmodelling of biological systems, and problems related to control theory.The applications of mathematics developed in this course are related to the numerical analysis of partial differential equations and of control problems. This activity is organized in collaboration with MathLab for the study of problems coming from the real world, from industrial applications, and from complex systems.

Some aspects of mean curvature flow

A review on properties of classical mean curvature flow.
Position of the problem.
Local well-posedness.
Comparison principle.
Convexity preserving.
Evolution of graphs.
The phase-field approximation and the Allen-Cahn equation.
The solution of Almgren-Taylor-Wang.

Introduction to Smooth Ergodic Theory

Smooth Ergodic Theory is the study of dynamical systems on smooth manifolds from a probabilistic and statistical perspective.

Functional analysis

Aim of the course is to introduce the basic tools of linear and nonlinear functional analysis, and to apply these techniques to problems in PDEs. The course is divided into two parts: the first one concerns spectral theory of linear operators, whose goal is to extend the classical notion of spectrum of a matrix to an infinite dimensional setting. The second part of the course introduces the methods of nonlinear analysis to find the zeros of a nonlinear functional on a Banach space. In particular it gravitates around the implicit function theorem and its variants.

Pages

Sign in