Diffusion time and splitting of separatrices for nearly integrable. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei Mat. Appl., 2000, 11, 235 [Internet]. 2000 . Available from: http://hdl.handle.net/1963/1547
. Arnold's Diffusion in nearly integrable isochronous Hamiltonian systems. [Internet]. 2000 . Available from: http://hdl.handle.net/1963/1554
. Sobolev quasi-periodic solutions of multidimensional wave equations with a multiplicative potential. Nonlinearity. 2012 ;25:2579-2613.
. Almost global existence of solutions for capillarity-gravity water waves equations with periodic spatial boundary conditions.; 2017. Available from: http://preprints.sissa.it/handle/1963/35285
. Quasi-periodic oscillations for wave equations under periodic forcing. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 16 (2005), no. 2, 109-116 [Internet]. 2005 . Available from: http://hdl.handle.net/1963/4583
. Cantor families of periodic solutions for wave equations via a variational principle. Advances in Mathematics. 2008 ;217:1671-1727.
. Multiplicity of periodic solutions of nonlinear wave equations. Nonlinear Anal. 56 (2004) 1011-1046 [Internet]. 2004 . Available from: http://hdl.handle.net/1963/2974
. Drift in phase space: a new variational mechanism with optimal diffusion time. J. Math. Pures Appl. 82 (2003) 613-664 [Internet]. 2003 . Available from: http://hdl.handle.net/1963/3020
. Sobolev periodic solutions of nonlinear wave equations in higher spatial dimensions. Archive for Rational Mechanics and Analysis. 2010 ;195:609-642.
. Quasi-periodic solutions with Sobolev regularity of NLS on Td with a multiplicative potential. Journal of the European Mathematical Society. 2013 ;15:229-286.
. Quasi-periodic solutions of completely resonant forced wave equations. Comm. Partial Differential Equations 31 (2006) 959 - 985 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/2234
. Cantor families of periodic solutions of wave equations with C k nonlinearities. Nonlinear Differential Equations and Applications. 2008 ;15:247-276.
. Bifurcation of free vibrations for completely resonant wave equations. Boll. Unione Mat. Ital. Sez. B 7 (2004) 519-528 [Internet]. 2004 . Available from: http://hdl.handle.net/1963/2245
. An abstract Nash-Moser theorem with parameters and applications to PDEs. Annales de l'Institut Henri Poincare. Annales: Analyse Non Lineaire/Nonlinear Analysis. 2010 ;27:377-399.
. KAM theory for the Hamiltonian derivative wave equation. Annales Scientifiques de l'Ecole Normale Superieure. 2013 ;46:301-373.
. Forced vibrations of wave equations with non-monotone nonlinearities. Ann. Inst. H. Poincaré Anal. Non Linéaire 23 (2006) 439-474 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/2160
. Meromorphic differentials with imaginary periods on degenerating hyperelliptic curves. Anal. Math. Phys. [Internet]. 2015 ;5:1–22. Available from: http://dx.doi.org/10.1007/s13324-014-0088-7
. Biorthogonal Laurent polynomials, Töplitz determinants, minimal Toda orbits and isomonodromic tau functions. Constr. Approx. 2007 ;26:383–430.
. Maximal amplitudes of finite-gap solutions for the focusing Nonlinear Schrödinger Equation. Comm. Math. Phys. [Internet]. 2017 ;354:525–547. Available from: http://dx.doi.org/10.1007/s00220-017-2895-9
. Differential systems for biorthogonal polynomials appearing in 2-matrix models and the associated Riemann-Hilbert problem. Comm. Math. Phys. 2003 ;243:193–240.
. Strong asymptotics for Cauchy biorthogonal polynomials with application to the Cauchy two-matrix model. J. Math. Phys. 2013 ;54:043517, 25.
. Painlevé IV Critical Asymptotics for Orthogonal Polynomials in the Complex Plane. Symmetry, Integrability and Geometry. Methods and Applications. 2018 ;14.
. Lie triple systems and warped products. Rend. Mat. Appl. (7). 2001 ;21:275–293.
. Cauchy biorthogonal polynomials. J. Approx. Theory [Internet]. 2010 ;162:832–867. Available from: http://0-dx.doi.org.mercury.concordia.ca/10.1016/j.jat.2009.09.008
. Rogue waves in multiphase solutions of the focusing nonlinear Schrödinger equation. Proc. A. [Internet]. 2016 ;472:20160340, 12. Available from: http://dx.doi.org/10.1098/rspa.2016.0340
.